POSTER: Reuse, don’t Recycle: Transforming
Algorithms that Throw Away Descriptors

Maya Arbel-Raviv

Technion - Israel Institute of Technology

Abstract

Lock-free algorithms guarantee progress by having threads
help one another. Complex lock-free operations facilitate
helping by creating descriptor objects that describe how
other threads should help them. In many lock-free algorithms,
a new descriptor is allocated for each operation. After an
operation completes, its descriptor must be reclaimed by
a memory reclamation scheme. Allocating and reclaiming
descriptors introduces significant space and time overhead.

We present a transformation for a class of lock-free
algorithms that allows each thread to efficiently reuse a
single descriptor. Experiments on a variety of workloads
show that our transformation yields significant improvements
over implementations that reclaim descriptors.

Keywords Concurrent data structures, Synchronization,
Lock-free
1. Introduction

As core counts continue to rise in modern processors, ap-
plications’ scalability is increasingly important. Designing
scalable concurrent software is notoriously difficult, and pro-
grammers must rely on efficient concurrent library code. Con-
current data structures represent some of the most fundamen-
tal building blocks in these libraries.

Lock-free data structures are beneficial since they guar-
antee that some thread always makes progress, even if pro-
cesses halt unexpectedly. This progress guarantee is typically
achieved with helping. When a thread is blocked by an opera-
tion performed by another thread, it helps the other thread to
make progress before continuing its own operation.

In complex lock-free data structures (e.g., [2, 3, 5]),
threads publish descriptors for their operations, and helpers
look at these descriptors to determine how to help. Exist-

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).

PPoPP ’17 February 04-08, 2017, Austin, TX, USA
(© 2017 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-4493-7/17/02. .. $15.00

DOI: http://dx.doi.org/10.1145/3018743.3019035

429

Trevor Brown

University of Toronto

ing lock-free algorithms that use descriptors fall into two
categories: those that initially allocate a fixed number of de-
scriptors and reuse them, and algorithms that allocate many
descriptors throughout an execution and rely on garbage col-
lection to reclaim them. We call the former reusable descrip-
tor algorithms and the latter throwaway descriptor algorithms.
Existing reusable descriptor algorithms use complicated ad-
hoc techniques that are difficult to separate from the algo-
rithms that use them. On the other hand, throwaway descriptor
algorithms are faced with the limitations of lock-free mem-
ory reclamation algorithms, which introduce significant time
and/or space overhead.

We introduce a transformation that takes a large class of
lock-free throwaway descriptor algorithms and produces lock-
free reusable descriptor algorithms with desirable properties.
Throwaway descriptor algorithms that use k descriptors per
operation are transformed into reusable descriptor algorithms
that use k descriptors per thread.

We applied our transformation to lock-free double-
compare-single-swap (DCSS) and k-compare-and-swap (k-
CAS) primitives, and to a lock-free binary search tree. We
compare our reusable descriptor implementations against
throwaway descriptor implementations that use state of the
art lock-free memory reclamation algorithms. Our results
show that the reusable descriptor implementations perform at
least as well as their throwaway descriptor counterparts, and
significantly outperform them in some workloads.

2. Transformation

We start by describing the class of non-blocking algorithms
to which our transformation can be applied. Each update
operation allocates a new descriptor object, and fills it with
information that describes any modifications it will perform.
This information will be used by any threads that help
the operation. (For example, if the non-blocking algorithm
performs its modifications with a sequence of CAS steps,
then the descriptor might contain the addresses, expected
values and new values for the CAS steps.) An operation then
“locks” an object by publishing a pointer to its descriptor in
the object, typically using CAS.

When a thread encounters a pointer ptr to a descriptor (for
a different operation), it may decide to help the other opera-
tion by invoking a function Help(ptr). If all accesses to fields
of a descriptor occur inside Help, then it is straightforward to
apply our transformation. Otherwise, some algorithm specific
knowledge may be necessary.

In our transformation, each thread has a single descriptor
of each type, and these descriptors are reused repeatedly.
Conceptually, each of these descriptors has multiple versions.
Each time an operation in the original algorithm would create
a new descriptor, it instead reuses its single descriptor and
increments its version. Whenever a thread tries to access
another thread’s descriptor, it must specify which version of
that descriptor it is trying to access. If the version it specifies
does not match the current version of the descriptor, then
the thread fails to access the descriptor. Thus, whenever a
thread accesses a descriptor, it always sees a consistent view
of its contents. This introduces new semantics for reading
and writing descriptor fields. In particular, these steps can
now fail (due to a descriptor being reused).

Naturally, the original algorithm must be modified to take
some special action when these steps fail. A failed step means
that the operation being helped has already finished. Since
descriptors are accessed only when a thread is helping another
operation complete, the failed step means that operation no
longer needs help, and the correct response is to stop helping.

We implement descriptor versions by storing a sequence
number in each descriptor. To avoid the ABA problem with
descriptor pointers, we represent a pointer to a descriptor
by the concatenation of the thread name (which identifies
the location of the descriptor) and the descriptor’s current
sequence number. Each time a process accesses a descriptor,
it verifies that the sequence number has not changed. If it has
changed, then the access fails.

3. Experiments

For brevity, we describe a small subset of our experiments.
Our experiments were run on a 2-socket Intel E7-4830 v3
with 12 cores per socket and 2 hyperthreads (HTs) per core,
for a total of 48 threads.

We compared our reusable descriptor implementation
of k-CAS [4] to several implementations that use memory
reclamation schemes. Specifically, we implemented k-CAS
using a lock-free memory reclamation scheme called hazard
pointers (HP) [7], and two blocking epoch-based reclamation
schemes DEBRA [1] and read-copy-update (RCU) [6].

We ran a simple array-based microbenchmark. For each
algorithm A € {Reuse, DEBRA, HP, RCU}, array size
S € {214,220 226} and k-CAS parameter k € {2,16},
we run ten timed trials for several thread counts n. In each
trial, an array with fixed size .S is allocated and each entry
is initialized to zero. Then, n concurrent threads run for
one second, during which each thread repeatedly chooses k
uniformly random locations in the array, reads those locations,

430

2x 24-thread Intel E7-4830 v3

Throughput (in ops/microsec) | Descriptor footprint (in bytes)

14 1.E+10
© 65><><><>"‘<>"<>"<>
— o 1.E+08
Il
< 8 1.E+06
" 6 1.E+04
N 4

) o 1.E+02

>
tn 0 1.E+00
0 8 16 24 32 40 48 0 8 16 24 32 40 48

4-Reuse DEBRA €HP -&-RCU
Figure 1: Results for the k-CAS microbenchmark. The x-
axis represents the number of concurrent threads.

and then performs a k-CAS (using algorithm A) to increment
each location by one.

Due to the lack of space, Figure 1 shows only graphs
for array size 226 and k = 16. The left graph shows the
throughput (total number of operation per microsecond).
Reuse outperforms every other algorithm and its throughput
is 2.2 times that of the next best algorithm at 48 threads. The
right graph shows the approximated descriptor footprint, i.e.,
the largest amount of memory occupied by descriptors at
any point during a trial. Note that the y-axis is a logarithmic
scale. The results show that DEBRA and HPs use almost
three orders of magnitude more memory than Reuse at their
peaks, and RCU uses nearly three orders of magnitude more
memory than DEBRA and HPs.

Acknowledgments

This work was supported by the Israel Science Foundation
(grant 1749/14), the Yad-HaNadiv foundation, the Natural
Sciences and Engineering Research Council of Canada, and
Global Affairs Canada. Maya Arbel-Raviv is supported in
part by the Technion Hasso Platner Institute Research School.

References

[1] T. Brown. Reclaiming memory for lock-free data structures:
There has to be a better way. In PODC 15, pages 261-270.

[2] T. Brown, F. Ellen, and E. Ruppert. A general technique for
non-blocking trees. In PPoPP ’14, pages 329-342.

[3] F. Ellen, P. Fatourou, E. Ruppert, and F. van Breugel. Non-
blocking binary search trees. In PODC 10, pages 131-140.

[4] T. L. Harris, K. Fraser, and I. A. Pratt. A practical multi-word
compare-and-swap operation. In DISC ’02, pages 265-279.

[5]1 S. V. Howley and J. Jones. A non-blocking internal binary
search tree. In SPAA ’12, pages 161-171.

[6] P. E. McKenney and J. D. Slingwine. Read-copy update: Using
execution history to solve concurrency problems. In Parallel
and Distributed Computing and Systems, pages 509-518, 1998.

[71 M. M. Michael. Hazard pointers: Safe memory reclamation
for lock-free objects. IEEE Trans. Parallel Distrib. Syst., 15(6):
491-504, June 2004.

