
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
Po
P
*

Ar
t ifact *

A
EC

P
P

Predicate RCU: An RCU for Scalable Concurrent Updates

Maya Arbel Adam Morrison
Computer Science Department

Technion—Israel Institute of Technology

Abstract
Read-copy update (RCU) is a shared memory synchronization
mechanism with scalable synchronization-free reads that never-
theless execute correctly with concurrent updates. To guarantee the
consistency of such reads, an RCU update transitioning the data
structure between certain states must wait for the completion of
all existing reads. Unfortunately, these waiting periods quickly be-
come a bottleneck, and thus RCU remains unused in data structures
that require scalable, fine-grained, update operations.

To solve this problem, we present Predicate RCU (PRCU), an
RCU variant in which an update waits only for the reads whose
consistency it affects, which are specified by a user-supplied predi-
cate. We explore the trade-offs in implementing PRCU, describing
implementations that reduce wait times by 10–100× with varying
overhead on reads on modern x86 multiprocessor machines.

We demonstrate the applicability of PRCU by applying it to two
RCU-based concurrent algorithms—the CITRUS binary search tree
and a resizable hash table—and show experimentally that PRCU
significantly improves the performance of both algorithms.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming

Keywords Concurrent data structures; Synchronization; RCU

1. Introduction
Concurrent data structures strive to be both scalable and fast.
Scalability requires increasing the amount of operations running
concurrently—in particular, allowing concurrent execution of reads
(operations that do not change the state of the data structure,
such as hash table lookups) and updates (e.g., insertions and
deletions). Being fast entails minimal synchronization overhead,
especially for reads, which are very common operations [15].
Unfortunately, most synchronization mechanisms either prevent
read/update concurrency—e.g., read/write locks [5]—or impose
synchronization overhead on reads, such as blocking [23] or vali-
dation checks and retries [3, 7].

The read-copy update (RCU) mechanism is a notable excep-
tion, as it allows scalable (synchronization-free) reads that execute
concurrently with updates. RCU places the burden of maintaining

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PPoPP’15, February 7–11, 2015, San Francisco, CA, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3205-7/15/02. . . $15.00.
http://dx.doi.org/10.1145/2688500.2688518

12 4 8 16 24 32 40 48 56 64
Threads

102

103

104

105

C
yc

le
s

(lo
g) RCU wait

Hash op

Figure 1: RCU wait-for-readers time compared to typical data
structure operation time: Latency (log scale) of concurrent hash
table lookup (read-only workload, load factor is 2) vs. wait-for-rea-
ders, on a four-processor AMD Opteron x86 machine (64 hardware
threads).

correctness solely on the updates, which must guarantee that read-
ers observe a consistent state of the data structure. To achieve this
goal, an update must sometimes ascertain that a modification it
makes is globally visible. For example, without knowing that the
removal of a node from a linked list is visible to all concurrent
reads, it is not safe to reclaim the node’s memory. Updates obtain
this guarantee using a wait-for-readers primitive provided by RCU,
which blocks until the completion of all reads that started before
the wait-for-readers invocation. This ensures that no read which
missed the modification—e.g., read a pointer to the node before it
was removed—remains.

Unfortunately, RCU appears unsuitable for use in data struc-
tures with scalable, fine-grained, update operations. The problem,
which RCU-based data structures inevitably run into [2, 16, 27], is
that wait-for-readers becomes a dominating bottleneck even if exe-
cuted rarely. For example, Figure 1 shows that wait-for-readers can
take 300× the time of a typical data structure operation like a hash
table lookup. Consequently, a thread performing a mix of reads and
updates (as usually happens) in which even 1% of operations in-
voke wait-for-readers will spend 75% of its time in wait-for-rea-
ders. This bottleneck stands in the way of wider RCU adoption,
which would allow many use-cases to benefit from its appealing
properties—particularly its simple interface, which enables writing
simple and clean algorithms. Indeed, RCU use in practice remains
confined to memory reclamation and to essentially read-only data
structures (i.e., billion-to-one read vs. update ratios [22]).

To solve this problem and open the door to broader RCU us-
age, this paper presents Predicate RCU (PRCU), an RCU variant
offering 10–100× shorter wait-for-readers times. PRCU builds on
the insight that an update needs to wait only for the reads whose
consistency it might affect and not all existing reads. Frequently, no
such reads will be running, allowing PRCU to avoid any waiting.
For example, a delete() of key x from a chained hash table—with
a linked list for each hash bucket—only needs to wait if reads are
traversing the bucket x hashes to.

PRCU uses a concise and opaque method of identifying such
affected reads: a read associates itself with an (algorithm-specific)
value—e.g., a key being looked-up—and wait-for-readers receives

a user-defined predicate,P , that identifies which reads to wait for—
e.g, those whose hash value equals x’s hash.

We present several PRCU implementations, exploring trade-
offs between wait-for-readers time and read overhead. In our first
implementation, EER-PRCU, wait-for-readers e valuates P for
e ach r eader and waits only for those readers P holds for, which

requires readers to post their value to memory. EER-PRCU reduces
wait-for-readers time by 10× with read overhead comparable to
that of existing RCU algorithms [6]. However, its wait-for-rea-
ders time complexity is linear in the number of threads, even if
no waiting is needed.

Our second implementation, D-PRCU, aims at breaking this
barrier by exploiting the d omain of values presented to PRCU
by the data structure. Here, a read interprets its value, v, as an
index to a table, C, of shared counters, incrementing C[v] when
starting and decrementing it on completion. A wait-for-readers
then essentially waits until the counters of values for which P
holds (i.e., {C[v] | P(v) = 1}) are zero. The idea is to provide
PRCU with a predicate that holds over few values, thus drastically
reducing wait-for-readers work, particularly in cases in which no
waiting is needed. For example, a hash table can use a key’s bucket
as its value, with an update working in bucket b invoking wait-for-
readers with a predicate that holds only for b. In such cases, wait-
for-readers time decreases by 100×. In update-heavy workloads,
this more than compensates for the cost of reader counter updates,
yielding an overall performance gain.

Our final implementation, DEER-PRCU, represents a middle
ground between EER-PRCU and D-PRCU: Like D-PRCU, it uses
the domain of data structure values, but it maintains a table of coun-
ters for each reader. DEER-PRCU thus has linear wait-for-readers
time complexity like EER-PRCU, but lower read overhead than
D-PRCU. In addition, DEER-PRCU alleviates cache coherency-
related ping pongs that occur in EER-PRCU because DEER-PRCU
readers do not always post their presence to the same memory lo-
cation.

We demonstrate the applicability of PRCU by applying it to
two RCU-based concurrent algorithms—the CITRUS binary search
tree [2] and a resizable hash table [27]—including defining pred-
icates suitable for D-PRCU. We show experimentally that PRCU
significantly improves the performance of both algorithms com-
pared to standard RCU, to the point of exceeding the performance
of non-RCU algorithms in some cases.

2. Background: RCU
Read-copy update (RCU) is a synchronization mechanism allowing
concurrent readers and updates. RCU strives to minimize the syn-
chronization overhead on readers, by placing the burden of main-
taining correctness on updates. To this end, updates atomically tran-
sition the data structure between consistent states, thereby guaran-
teeing that a reader always observes some consistent state. Typi-
cally, this means that an object is updated by copying it, updating
the copy, and atomically swinging a pointer from the old object to
the new (updated) object—hence the name read-copy update. Re-
claiming the memory of the old copy is the original motivation for
RCU’s wait-for-readers primitive. (The idea is that the copy can be
reclaimed after all existing reads, which might hold a reference to
it, have completed.) However, wait-for-readers is useful as a gen-
eral algorithmic building block [2, 16, 27].

2.1 RCU Interface and Terminology
An RCU-protected read operation is delimited by wait-free rcu enter
and rcu exit operations and is referred to as a read-side critical sec-
tion. (For simplicity, we do not consider nested read-side critical
sections.) Times when a reader is not inside a read-side critical sec-

rcu enter

rcu enter

rcu enter

rcu exit

rcu exit

rcu exit

wait-for-readers

Figure 2: RCU safety property: semantics of wait-for-readers.

tion are denoted quiescent states. A time period during which every
thread goes through a quiescent state is called a grace period. The
RCU wait-for-readers method waits for a grace period to occur,
i.e., it does not return before all pre-existing readers have exited
their critical section by calling rcu exit. The RCU safety property
(Figure 2) formalizes this: if the return from a rcu enter precedes
the call to wait-for-readers than any operation of the read side
critical section precedes the return from wait-for-readers [10, 11].
Notice that there is no promise of returning soon after a grace
period occurs, and RCU implementations exploit this to obtain
zero-overhead reads at the price of extremely long wait-for-rea-
ders times.
Asynchronous wait-for-readers RCU overcomes the wait-for-
readers bottleneck for memory reclamation, its main current use
case, by providing a method, call rcu, that defers the reclamation
to the end of the grace period without blocking the calling thread.
Internally, call rcu records the desired action (passed as a callback
function) and periodically checks whether a grace period has oc-
curred, at which point it invokes the callback. Still, wait-for-rea-
ders must be used when strict memory bounds are required, since
call rcu can accumulate unbounded amounts of unreclaimed mem-
ory until a grace period occurs. In this paper, we focus on wait-for-
readers, since fast wait-for-readers time can be easily translated
into faster grace period detection for call rcu.

2.2 RCU Implementations
Below we describe existing RCU implementations and their perfor-
mance characteristics (cf. § 6).
Tree RCU (Linux kernel implementation [20]) Conceptually,
Tree RCU maintains a bit string with a bit per thread. A wait-for-
readers operation sets all the bits, and a thread entering a quiescent
state clears its bit. (wait-for-readers operations are serialized.) A
grace period occurs when all bits are clear. The bit string is imple-
mented in a hierarchical tree manner: A leaf packs several thread
bits, and each level up contains a bit per child, indicating if all the
bits of the child leaf are cleared. The last thread to clear its bit in a
leaf clears the leaf’s bit in the parent, repeating this up the tree as
long as is keeps clearing the last bit on the path to the root. wait-
for-readers detects the grace period by polling the root node.

Performance: Tree RCU leverages its in-kernel implementation
to obtain zero overhead rcu enter and rcu exit. It achieves this
by defining special code locations—such as during context switch
code—as quiescent states, relegating the bit checking to this code
only. However, wait-for-readers times become long—possibly tens
of milliseconds—since they are tied to the OS scheduling. Tree
RCU is not suitable for general purpose userspace code, in which
quiescent states cannot be easily identified.
URCU The userspace RCU library [6] uses a global grace period
counter. Each thread maintains a variable indicating whether or not
it is inside a read-side critical section together with a snapshot of
the grace period counter at the beginning of the critical section.
A thread calling wait-for-readers acquires a global lock protecting
the grace period counter, increments the counter and waits for each
thread that is currently inside a read-side critical section that started
before the current grace period.

Performance: URCU abandons the zero read overhead ap-
proach; its rcu enter writes to memory and issues a memory fence.
In exchange for this it gains faster wait-for-readers time and gen-
erality. However, URCU’s global wait-for-readers lock prevents
wait-for-readers performance from scaling [2].
Batching Both Tree RCU and URCU employ batching to compen-
sate for the serialization of wait-for-readers operations: if a wait-
for-readers operation, w, arrives while another waiter, w0, is run-
ning but before w0 has seen any quiescent state, then w can “piggy-
back” on w0’s grace period, instead of waiting after w0 completes.
However, URCU batches waiters in a FIFO queue, which is itself
a contended bottleneck, and thus URCU wait-for-readers remains
unscalable. In addition, batching cannot decrease the fundamen-
tally long grace period time of Tree RCU.
Distributed counters RCU Arbel and Attiya’s RCU implemen-
tation [2] supports multiple RCU waiters without synchronization
among them. Instead of a global grace period counter, each thread
maintains a local critical section counter. A thread calling wait-
for-readers waits for each thread to increment its local counter or
indicate that it is no longer inside a read-side critical section.

Performance: The read overhead is comparable to URCU—a
write and memory fence. wait-for-readers operations scale much
better than in URCU, since they are read-only.

3. Predicate RCU (PRCU)
PRCU aims to address the inherent lack of scalability of wait-
for-readers, by providing RCU-using algorithms with an interface
to specify which reads a wait-for-readers should wait for. The
observation behind this approach is that an update invoking wait-
for-readers only needs to wait for reads whose consistency it might
affect [2, 16, 27], but is forced to wait for all reads because of
the conservative wait-for-readers interface. This section defines the
PRCU interface, which enables an algorithm to express precisely
which reads it wishes to wait for.

3.1 PRCU Interface

Values For simplicity, we describe PRCU methods as accepting
values from a data structure-specific domain, D. However, these
values are opaque to PRCU, and so we envision PRCU implemen-
tations accepting a generic encoding of values (say, 64-bit integers)
that can be applied to different algorithms.
Methods Similarly to the RCU interface, the PRCU interface con-
sists of the methods below:

1. prcu enter(v) and prcu exit(v), where v ∈ D. Similarly to
RCU, the interval between a prcu enter(v) and a matching
prcu exit(v) is named a read-side critical section on v. For
simplicity, we do not allow nesting of read-side critical sections,
but it is straightforward to support.

2. wait-for-readers(P), where P : D → {0, 1} is referred to as
the predicate. We say that P(v) holds if P(v) = 1.

We say that a thread enters the read-side critical section when
its prcu enter(v) completes, and exits the critical section when it
invokes prcu exit(v).
PRCU safety A PRCU implementation must satisfy the PRCU
safety property: if a read-side critical section on v, rv , is entered
before the invocation of a wait-for-readers(P) and P(v) holds,
then rv is exited before the return of the wait-for-readers(P). That
is, wait-for-readers(P) blocks until the completion of all existing
read-side critical sections of values v for which P(v) holds.
Encoding predicates To facilitate efficient predicate evaluation,
we require the implementation of wait-for-readers(P) to accept

its predicate in the form of a function in the underlying program-
ming language, e.g. a C function pointer. PRCU assumes such a
predicate-encoding function has no side effects, and wait-for-rea-
ders(P) may invoke P any number of times during its execution.
(Users should thus strive to implement predicates efficiently.)
Specialized predicates A PRCU implementation may wish to ex-
ploit structural properties of P to implement wait-for-readers(P)
more efficiently—for example, D-PRCU (§ 4.2) depends on being
able to quickly iterate over the values P holds for. To this end,
an implementation may accept additional specialized predicate en-
codings that succinctly expose the desired properties. Our imple-
mentations support two such specialized predicates: (1) singletons,
which hold only for a single value and are encoded as that value,
and (2) iterable predicates, which hold over some set of values
{v1, v2 = next(v1), v3 = next(v2), . . . , vk}, where next : D → D
is referred to as the iterator. Iterable predicates are encoded as
(v1, vk, next), where the iterator is passed as a function object.
(Note that a singleton is an iterable predicate, but for simplicity
we distinguish the two.)
RCU fallback Our experience (§ 5) is that domain values for read-
side critical sections that wrap concurrent data structure operations
map naturally to the semantics of the data structure, and are there-
fore straightforward to define. In general, however, it may not be
possible to a priori define a domain value. In such cases, program-
mers can define a wildcard value for which every predicates always
holds. Wildcards enable PRCU to “fall back” into standard RCU
mode, in which a wait-for-readers(P) waits for all readers.

4. PRCU Implementations
This section describes several PRCU implementations with differ-
ent trade-offs—which we discuss in detail—between wait-for-rea-
ders time and overhead imposed on read operations.

For simplicity, we assume a standard sequentially consistent
(SC) memory model. In practice, an implementation must pre-
vent hardware and compiler reordering of memory operations. x86
processors—our evaluation platform—implement a TSO memory
model [25] that can only reorder a load with a prior store to a differ-
ent address. Our pseudo code thus indicates where memory fence
instructions should be placed to prevent such reordering. We omit
compiler fences used to prevent instructions from escaping out of
read-side critical sections and across wait-for-readers(P) calls. We
leave to future work the placement of fences for memory models
weaker than TSO, such as those of ARM and POWER processors.

4.1 EER-PRCU
In EER-PRCU, wait-for-readers(P) e valuates P for e ach exist-
ing r eader and waits only for those readers P holds for. To this
end, EER-PRCU maintains an array of single-writer multi-reader
nodes—one for each thread. A prcu enter(v) writes v into a field
in the node associated with the invoking thread, while a wait-for-
readers(P) scans the array and waits for any thread whose node
contains a value for which P holds.

We implement waiting using time-based quiescence detection (a
generalization of epoch-based detection [9]) which works by wait-
ing until a thread posts in memory that it has entered or exited a
read-side critical section at a time after wait-for-readers(P)’s invo-
cation time. Time-based quiescence detection requires some global
clock, represented as a monotonically increasing time() method,
which we discuss how to implement shortly. (Memory models
weaker than the SC model we use require more involved time()
properties [26], but the implementations we discuss below are com-
patible with these properties as well.)

Algorithm 1 presents the EER-PRCU pseudo code. In addition
to the value field, a thread maintains a time field, which either

Algorithm 1 EER-PRCU: code for thread Ti

1: Node type:
2: struct { value : 64-bit int, time : 64-bit int }
3: function prcu enter(v)
4: Nodes[i].value← v
5: Nodes[i].time← time()
6: . TSO requires a memory fence here.

7: function prcu exit(v)
8: Nodes[i].time←∞

9: function wait-for-readers(P)
10: t0← time()
11: for each thread Tj 6= Ti do
12: if P(Nodes[j].value) then
13: while true do . Wait for Tj

14: t← Nodes[j].time
15: if t > t0 then break

contains a time value read in the execution interval of prcu enter,
or—if the thread is not inside a read-side critical section—contains
∞. To wait for a reader, a wait-for-readers(P) spins, reading this
time field until it reads a value t > t0, where t0 is the time in which
the wait-for-readers(P) started (Line 10). The waiting process is
read-only, and thus scales well to concurrent invocation of wait-
for-readers(P) that occur in algorithms with scalable updates.

Proposition 1. EER-PRCU satisfies the PRCU safety property.
Proof. Let w be a wait-for-readers(P) invocation by thread Ti,
and let rv be a read-side critical section on v, where P(v) holds.
Suppose, towards a contradiction, that rv’s prcu enter completes
before w’s invocation, and yet w completes before rv invokes
prcu exit. Thus, rv is invoked by thread Tj 6= Ti and so Ti reads
v from Nodes[j].value (Line 12) (since rv has not completed at
this point). w therefore runs Line 15 until reading a time t strictly
greater than w’s t0. Since rv still has not completed at this point,
t is the value written by rv’s prcu enter. This is a contradiction,
since time() is monotonically increasing.

Trade-offs Compared to OS kernel-level RCU [21], in which
rcu enter is a no-op with zero overhead, EER-PRCU imposes ad-
ditional overhead by updating the node, which in practice requires
issuing a memory fence to prevent reordering of the node updates
with the subsequent reads done in the critical section. (Compa-
rable read overhead exists in other RCU implementations, which
have abandoned the zero overhead approach to provide userspace
functionality [6] or shorter grace periods [19]). In exchange for
this small read overhead, EER-PRCU obtains a read-only wait-
for-readers(P) implementation which thus scales as the number
of concurrent wait-for-readers(P) instances grows. However, the
time complexity of wait-for-readers(P) is linear in the number of
threads in the system, even if waiting turns out to be unnecessary.
Clock implementation Our evaluated EER-PRCU implementa-
tion (§ 6) implements time() by reading the machine’s timestamp
counter (TSC), a cheaply-accessible x86 hardware counter that is
architecturally defined as suitable for time-keeping purposes [1].
Other approaches exist for architectures without such a hardware
counter. For example, the clock can be implemented based on an
epoch count [9], or one can use thread-private clocks instead of a
global clock, similar to the CITRUS tree’s RCU implementation [2].

4.2 D-PRCU
D-PRCU tries to exploit the d omain of the predicate to reduce
the number of memory locations a wait-for-readers(P) scans when
looking for relevant readers—e.g., to O(1) locations. This makes
wait-for-readers(P) scalable in the number of threads, because

Algorithm 2 D-PRCU with iterable predicate: code for thread Ti

1: C node type:
2: struct { gate : bit, readers[2] : 64-bit int, lock : mutex }
3: Thread-local variable: b : bit

4: function prcu enter(v)
5: b← C[hrcu(v)].gate
6: fetch-and-add(C[hrcu(v)].readers[b], 1)
7: . TSO atomic operation also acts as a memory fence.

8: function prcu exit(v)
9: fetch-and-add(C[hrcu(v)].readers[b], -1)

10: function wait-for-readers(P=(v1, vk, next))
11: for each v ∈ {v1, v2 = next(v1), . . . , vk} do
12: drain(hrcu(v))

13: function drain(j)
14: C[j].lock()
15: g ← C[j].gate
16: await(C[j].readers[¬g] = 0)
17: C[j].gate← ¬g
18: await(C[j].readers[g] = 0)
19: C[j].unlock()

frequently no waiting is required, which turns the act of detecting
this case into the critical path of wait-for-readers(P).

The idea in D-PRCU is to track all readers with the same value
v in the same memory location C[v], allowing wait-for-readers(P)
to scan only locations C[v] for which P(v) holds. To do this
efficiently, D-PRCU requires a specialized predicate that succinctly
encodes P−1 .

= {v | P(v) = 1}. Such predicates often
arise naturally when applying PRCU to a scalable data structure
(see § 5).

D-PRCU aggressively trades off short wait-for-readers(P)
times with higher read overhead. This trade-off pays well for
update-heavy workloads (§ 6), but is likely not appropriate else-
where. (We discuss this later.)
Implementation Conceptually, a D-PRCU reader interprets v as
an index to a table, C, of shared counters, atomically incrementing
C[v] in prcu enter and decrementing it in prcu exit. 1 A wait-for-
readers(P) then scans C[v] for each v ∈ P−1, and waits until C[v]
becomes zero. To implement this scanning, we assume an iterable
predicate; dealing with a general predicate is described later.

Due to practical concerns, the implementation (Algorithm 2)
deviates from the above description in two ways. First, we use
a more complex waiting protocol—explained below—to prevent
wait-for-readers(P) from waiting forever at some C[v], which
can happen if prcu enter(v) invocations during the wait-for-rea-
ders(P) execution interval keep C[v] > 0 at all times. Second,
since the domain D is opaque to PRCU (and may be huge), we use
a hash function hrcu : D → [|C|] to map values into C.2

Waiting protocol We use a protocol similar to that of SRCU [19].
A node C[v] contains two counters, readers[i], i ∈ {0, 1}, and a
gate bit that specifies which counter readers should increment. A
reader remembers the gate value, b, it observes when entering the
read-side critical section (Line 5), and uses it to decrement the same
counter when exiting the critical section. To wait at node C[v],
wait-for-readers(P) reads g, the value of the gate, and then waits

1 The pseudo code implements atomic counter updates using fetch-and-
add, which is available on x86 machines. On architectures without fetch-
and-add, counter can be updated using a compare-and-swap loop.
2 Hashing introduces the possibility of multiple values in P−1 mapping to
the same C element, but wait-for-readers(P) can easily avoid waiting at
the same node twice. We omit this detail from the pseudo code.

for readers[¬g] to be 0 (Lines 15–16). This “drains” any readers
that read ¬g from the gate, since new readers arriving do not
increment readers[¬g]. Next, wait-for-readers(P) toggles the gate
and then waits for readers[g] to be 0 (Lines 17–18). This now drains
readers that read g from the gate, ensuring that—pending enough
steps by readers—wait-for-readers(P) does not wait forever. (Note
that concurrent wait-for-readers(P) operations synchronize using
a lock in each C node.) The following establish the safety of the
waiting protocol.

Lemma 1. Let w be a wait-for-readers(P) operation, and let rv
be a read-side critical section on v entered before w’s invocation.
Then, if w reads 0 from C[j].readers[0] and from C[j].readers[1],
where j = hrcu(v), rv is exited before w completes.
Proof. Let i be the value rv reads from C[j].gate in prcu enter
(Line 5). Because rv’s prcu enter(v) completes before w starts,
C[j].readers[i] > 0 when w starts. Then w reading 0 from
C[j].readers[i] implies that rv has decremented C[j].readers[i] by
that time, i.e., rv has invoked prcu exit during w’s execution.

Proposition 2. D-PRCU satisfies the PRCU safety property.
Proof. Immediate from Lemma 1.

Optimistic waiting Our evaluated D-PRCU implementation adds
an optimistic waiting optimization to Algorithm 2. The idea is to
hope that readers will drain naturally, and thus avoid acquiring
the lock and toggling the gate bit. Thus, a wait-for-readers(P)
waits at node C[v] by first spinning for a while, reading both of
C[v]’s counters, until it has observed 0 in each counter. It moves
to the full protocol only after timing out in this loop. Lemma 1
implies the safety of this optimization. Optimistic waiting increases
concurrency among wait-for-readers(P) operations and reduces
their latency, particularly when no waiting is required, i.e., both
counters are zero to begin with.
Trade-offs The amount of read overhead D-PRCU imposes on
reads depends on the workload. Concurrent readers accessing the
same value turn the relevant counter into a contended bottleneck,
as with standard read/write locks [4]. In contrast, when readers
access disjoint values, a counter update becomes an uncontended
atomic operation, which is relatively cheap on modern machines.
(However, as different values map to distinct counters, the chance
of the counter update entailing a cache miss increases—as opposed
to EER-PRCU, in which a reader updates one memory location.)
In exchange for this, wait-for-readers(P) time becomes almost
negligible, which can more than compensate for the read overhead
in an update-heavy workload (see § 6).
General predicate support For completeness, we describe how
D-PRCU supports general predicates. Given a non-specialized P ,
wait-for-readers(P) applies the waiting protocol at each node of
C. This likely obviates the benefit of D-PRCU over EER-PRCU, as
we expect |C| to be greater than the number of threads, to reduce
chance of contended counters.
Further optimizations D-PRCU can benefit from a couple of stan-
dard optimizations, which we leave for future work: First, expand-
ing the C table, to address hash collisions that lead to contention on
a counter. (Doing this requires a global wait-for-readers, to drain
readers from the old table.) Second, batching in the wait proto-
col [19]. Here, if a wait-for-readers(P) operation, w, finds the lock
of node C[v] taken but the lock holder, w0, has not yet read 0 from
any of the counters, then w can “piggyback” on w0 and avoid going
through the wait protocol once the lock is released.

4.3 DEER-PRCU
The DEER-PRCU implementation incorporates the idea of exploit-
ing a specialized predicate’s domain into EER-PRCU, with the

Algorithm 3 DEER-PRCU with iterable predicate: thread Ti code

1: Ci node type:
2: struct { value : 64-bit int, time : 64-bit int }
3: function prcu enter(v)
4: Ci[hrcu(v)].value← v
5: Ci[hrcu(v)].time← time()
6: . TSO requires a memory fence here.

7: function prcu exit(v)
8: Ci[hrcu(v)].time←∞

9: function wait-for-readers(P=(v1, vk, next))
10: t0← time()
11: for each thread Tj 6= Ti do
12: for each v ∈ {v1, v2 = next(v1), . . . , vk} do
13: while true do . Wait for Tj

14: t← Cj [hrcu(v)].time
15: if t > t0 then break
16: . Tj entered CS while we are running?
17: if t 6=∞ then break

goal of alleviating a cache coherency-related ping pong problem in
EER-PRCU: A reader and wait-for-readers(P) require conflicting
rights to the cache line of the reader’s node—exclusive access for
the reader as opposed to read access for the wait-for-readers(P).
As a result, both reader and wait-for-readers(P) incur a cache miss
when accessing the node.

DEER-PRCU uses specialized predicates to alleviate cache line
ping pongs. Each reader r maintains an array Cr of EER-PRCU-
style nodes, updating the value and time in node Cr[hrcu(v)] when
entering a read-side critical section on v. (We update the value to
support general predicates, as explained below.) A wait-for-rea-
ders(P) scans only the times in nodes Cr[hrcu(v)], v ∈ P−1, for
each reader r. Consequently, a reader and wait-for-readers(P) that
do not conflict semantically also do not conflict at the memory
operation level. Algorithm 3 shows the complete implementation.
The waiting protocol differs from EER-PRCU in that it terminates
only after observing t0 < t 6= ∞, as that implies that any pre-
existing read-side critical section has completed. We thus have:

Proposition 3. DEER-PRCU satisfies the PRCU safety property.

DEER-PRCU exploits the fact that the Cr arrays are single-
writer to support general predicates more efficiently than D-PRCU.
A reader r writes its current value, v, to Cr[hrcu(v)], which allows
wait-for-readers(P) to evaluate P for each Cr[j] node and wait
if required. Unlike D-PRCU, these arrays can be small as there is
no concern of hash collisions due to concurrent accesses—we use
16 elements in our DEER-PRCU implementation, which enables
quick scanning by wait-for-readers(P). (We omit general predicate
support from the code.)

DEER-PRCU is especially effective on systems with older
Westmere Intel processors, which appear to serialize cross-processor
get-read-ownership coherency transactions. In EER-PRCU, this
causes the latency of the load instructions issued by wait-for-rea-
ders(P) to read the readers’ time field to increase with the amount
of concurrent wait-for-readers(P) invocations, because the time
field is frequently written to by the reader. In DEER-PRCU, how-
ever, a reader and wait-for-readers(P) access to the same time field
less frequently—only when they conflict semantically—and so the
time fields are usually in shared state in the caches. Consequently,
on these systems wait-for-readers(P) in DEER-PRCU is about 4×
faster than in EER-PRCU.

5. Applying PRCU to Algorithms
This section provides two examples demonstrating the process of
replacing RCU with PRCU in RCU-based algorithms.

All

All

Odd Even

Odd Even

1 2 3 5 6

1 2 3 5 6

All

Odd Even

1 2 3 5 6

All

Odd Even

1 2 3 5 6

(a)

(c)

(b)

(d)

Figure 3: Expanding a hash table with a single bucket (All) into a
table with two buckets.

5.1 Resizeable Hash Table
The resizeable hash table of Triplett et al. [27] is a closed address-
ing hash table that implements buckets using RCU-based linked
lists. Lookups can safely traverse the buckets concurrently to up-
dates, which synchronize via per-bucket locks. The table expan-
sion algorithm uses wait-for-readers extensively, as described be-
low, making wait-for-readers time a dominating factor in its perfor-
mance. During expansion, insert()s are prevented [27]. Thus, ex-
cessive expansion time poses a problem, particularly for huge hash
tables such as those used in key/value stores and caching servers.
Table expansion The table uses a modulo-table-size hash function
to ensure that during an expand operation each original bucket is
split into two new buckets. The expand operation creates a new
array of buckets. It then links each new bucket to an existing
bucket’s linked list, pointing to the first node that matches the new
bucket (Figure 3a). Next, the expand splits the old bucket into two
lists, one for each bucket (Figure 3b– 3d). The expand calls wait-
for-readers before every pointer change in this splitting process.
This makes sure that lookups do not traverse the wrong linked list.
For example, in Figure 3, if a lookup of 2 reaches the node 1 before
the new bucket array is created (before (a)), then gets delayed until
(b), it will incorrectly fail to find 2. Similarly, if a lookup of 6 starts
at time (b) and reaches node 3, then gets delayed until (d), it will
incorrectly miss 6. Using wait-for-readers before every unlinking
step prevents these problems.
Applying PRCU An expands of bucket b needs to wait only for
operations accessing nodes linked from b. Thus, we define the
values for read-side critical section as its bucket. Then, an expand
splitting bucket bold needs to wait for reads accessing bold and bnew,
the bucket containing items being split. This is naturally expressed
passing P(x) = (x = bold ∨ x = bnew) to wait-for-readers(P),
which is also an iterable predicate.

5.2 The CITRUS Tree
CITRUS is a concurrent binary search tree providing a wait-free
contains() operation that can run concurrently with tree updates.
CITRUS uses fine-grained locking to synchronize updates, and
RCU to protect tree traversal—both contains() queries and the
traversal prefixes of insert() and delete() updates.

Citrus implements an internal search tree, i.e., each node holds
a key (henceforth, we will refer to nodes and keys interchangeably).
Therefore, CITRUS must support deletion of an internal node with
two children, as such a node cannot be merely linked out of the tree.
Deleting a node k with two children requires replacing k with its
successor k′, that is, moving the leftmost node in k’s right subtree,
T , upwards (see left side of Figure 4). However, simply replacing
k with k′ can cause a contains() to return the wrong result. For
example, moving k′ up may cause a contains(k′) concurrently
traversing T to incorrectly return false.

k k′

k′

k

k′

Figure 4: CITRUS: Deletion of internal node with key k.

In general, replacing k with k′ shrinks the interval of keys that
can be present in T—specifically, any search for key in (k, k′]
would formerly enter T , but with k′ at T ’s root would turn left
instead. It may seem that because k′ is the successor of k, this
only affects contains(k′)—after all, a contains() for a different
value that ends up at the old parent of k′ and returns false still
returns the correct semantic result. However, an insert() in CITRUS
performs its initial search just like a contains()—optimistically,
in a read-side critical section. Consequently, an insert(k∗), k∗ ∈
(k, k′], that is traversing T , will stop at the old parent of k′ and
insert k∗ as its child, leading to a lost update.

CITRUS uses RCU to avoid these problems. Instead of mov-
ing the successor, k′, to the new location, it uses a copy of k′ (see
Figure 4) and removes the original k′ only after calling wait-for-
readers. Thus, new operations find k′ in its new location, while
the original k′ disappears only after every pre-existing traversal
finishes. In addition, CITRUS prevents pre-existing insert()s from
inserting new keys as children of the original k′ by marking this
node [2]. The wait-for-readers thus guarantees consistency of CIT-
RUS operations.
Applying PRCU CITRUS needs to wait only for searches on keys
in (k, k′]. (Its correctness proof [2, Lemma 4] shows this formally.)
This can be easily expressed using a PRCU predicate P(x) = x >
k ∧ x ≤ k′, coupled with having operations pass their search key
as the value in prcu enter/prcu exit.

To apply D-PRCU, we need to express P as an iterable predi-
cate. If the key domain, D, is finite or countably infinite, P can be
expressed as (succD(k), k′, succD), where succD is the successor
function over D—e.g., succD(x) = x+ 1 over the integers. How-
ever, because D-PRCU requiresP to hold over few values to obtain
sub-linear wait-for-readers time (§ 4.2), this naive approach works
only if the interval (k, k′] is small.

In many cases, we can obtain good D-PRCU performance by
presenting it with a compressed domain, in which the intervals will
usually be small. The idea is to hash the keys so that both of an
interval’s endpoints likely fall into the same bucket. For example,
with integer keys we can divide D to equally sized intervals, map-
ping all keys in each interval to the same bucket. That is, a search
for k calls prcu enter/prcu exit with value v = bk/Sc, and a
delete() that needs to wait for searches in (k, k′] uses the predi-
cate P(x) = x ∈ (bk/Sc, bk′/Sc]. The factor S can be fixed,
derived from properties of the workload, or with the assistance of
PRCU. Our evaluation uses the latter approach, using S = |C|, the
size of D-PRCU’s counter table.
Alternative to PRCU? CITRUS can seemingly avoid the wait-
for-readers bottleneck by using call rcu; this is correct because a
delete()’s linearization point occurs before the wait-for-readers.
However, a delete() can release its locks only after the grace
period, which in existing call rcu implementations is detected by
dedicated threads. The increased lock hold times resulting in this
approach decrease throughput by 2×–100×, depending on the
level of contention in the tree.

6. Evaluation
This section evaluates the impact of applying PRCU to the CITRUS
tree and resizable hash table (as described in § 5).
Platform We use a 64-core x86 system, consisting of 4 AMD
Opteron 6376 (Abu Dhabi) processors, each with 16 2.3 GHz cores.
We use C implementations of the algorithms and RCU, compiled
with gcc 4.6.3 at O3 optimization level. To prevent memory al-
location from being a bottleneck, we use the scalable jemalloc
multi-threaded memory allocator.
RCU implementations We compare our PRCU implementations
to three RCU implementations. First, URCU, Desnoyers and
McKenney’s userspace RCU implementation [6], an optimized
RCU implementation available as open source. Second, Tree RCU,
our implementation of the Linux kernel hierarchical RCU algo-
rithm [20]. While Tree RCU is not suitable for general userspace
code, we manage to apply it in our restricted setting by treating
the states between data structure operations as quiescent (cf. §2).
(Note that as a result, our Tree RCU has significantly shorter grace
periods than the Linux Tree RCU.) Finally, Time RCU, which uses
time-based quiescence detection—similarly to RCU implementa-
tion used in the CITRUS tree [2], but optimized to use the system’s
timestamp counter (TSC) as the PRCU implementations do. Time
RCU serves two purposes: First, it is essentially EER-PRCU with-
out the predicate evaluation, which allows teasing apart the impact
of using the predicates. Second, Time RCU performs better than
Tree RCU and URCU on workloads with updates [2], and so en-
ables a fairer comparison against RCU.
PRCU parameters The D-PRCU implementation uses a 1024-
counter table. The DEER-PRCU implementation uses a 16-entry
node array for each thread.

6.1 CITRUS Tree

Methodology We follow prior work on concurrent search trees
(e.g., [3, 17, 24]) and measure the throughput of the trees using a
benchmark in which threads repeatedly invoke operations follow-
ing a specified distribution, with integer keys selected uniformly
from a given range. We use the following operation distributions,
which simulate various common workloads: read-dominated
(98% contains(), insert() and delete() each 1%), mixed (70%
contains(), insert() and delete() each 15%) and write-dominated
(50% insert() and 50% delete()). To understand RCU read over-
head, we additionally use a read-only distribution (100% con-
tains()). Initially, the tree contains K/2 random keys, where K is
the size of the key space; the equal insert()/delete() probability
keeps the tree at roughly this size throughout the experiment. We
show results for K ∈ {2 × 104, 2 × 106}—results for other key
ranges are similar. Each experiment runs for 3 seconds, and we re-
port the median of 5 experiments (all experiments have negligible
variance).
Non-RCU trees We do not claim PRCU-based CITRUS to be the
best performing search tree, but rather a demonstration of the per-
formance gains achievable by replacing RCU with PRCU. Nev-
ertheless, as a performance yardstick, we evaluate Opt-Tree, the
optimistic relaxed balance AVL tree of Bronson et al. [3] 3 and LF-
Tree, the recent lock-free tree of Natarajan and Mittal [24]. How-
ever, we report only the Opt-Tree results, to maintain legibility of
the plots as LF-Tree usually outperforms Opt-Tree and CITRUS by
2×. Note that Opt-Tree is the more meaningful apples-to-apples
comparison, as it is a lock-based internal tree like CITRUS, as op-
posed to the lock-free and external LF-Tree.

3 Implemented in C by Philip W. Howard: https://github.com/
philip-w-howard/RP-Red-Black-Tree.

Throughput Figure 5 shows the throughput of the tested imple-
mentations, exposing several trends. First, EER-PRCU outper-
forms RCU, obtaining 1.2× better throughput than Time RCU (the
best of the RCU variants) and 1.5×–3× higher throughput than
URCU, the main RCU library available today. Second, D-PRCU
CITRUS gains advantage as the update rate increases—it is worse
than Time RCU on the read-dominated workload, equals EER-
PRCU in the mixed workload, and outperforms EER-PRCU on the
write-dominated workload by 1.45× (large tree) to 1.74× (smaller
tree). In the write-dominated workload, D-PRCU even outperforms
Opt-Tree—which is the best performer in the other workloads—by
≈ 10%. Third, EER-PRCU and DEER-PRCU perform compara-
bly, with an advantage to EER-PRCU in read-dominated workloads
that shrinks as the update rate increases, shifting to an advantage
to DEER-PRCU in the write-dominated workload—about 1.3× on
the smaller tree. Fourth, when using Tree RCU and URCU, CITRUS
exhibits poor performance in the non read-dominated workloads.

To explain these performance trends, Figure 6 by depicts the
wait-for-readers latency and the resulting time CITRUS spends in
wait-for-readers in the smaller tree. In the read-dominated work-
load, compared to Time RCU, EER-PRCU has 14× shorter wait-
for-readers times, D-PRCU is 25× shorter, and DEER-PRCU is
4× shorter. Consequently, the overall time PRCU-based versions
spend in wait-for-readers reduces by these factors. However, these
versions spend little time in wait-for-readers—which is rarely in-
voked in this workload (< 1%)—and so throughput improvement
is modest compared to wait-for-readers time decrease. (The excep-
tions are URCU and Time RCU, which are 2.5× and 40× worse
than Time RCU.) Moreover, D-PRCU’s shortest wait-for-readers
time do not translate to the best performance because of the read
overhead it imposes.

These trends change in the write-dominated workload, with
EER-PRCU obtaining 3× shorter wait-for-readers times than
Time RCU, while D-PRCU becomes 100× better than Time RCU
and DEER-PRCU 4× better. As a result, the D-PRCU version
spends negligible amount of time in wait-for-readers and obtains
the best performance. In contrast, the throughput advantage of
DEER-PRCU over EER-PRCU is not explained by wait-for-rea-
ders time, since DEER-PRCU spends only 7% less time in wait-
for-readers compared to EER-PRCU. EER-PRCU’s throughput
suffers because of increased read overhead due to cache coherency
read/write ping pongs on EER-PRCU’s book-keeping data (§ 4.3),
which DEER-PRCU alleviates. This effect is pronounced in this
workload because of the high rate of wait-for-readers invocations.
Read overhead Overhead that RCU/PRCU impose on reads con-
sists of two factors: First, the cost of rcu enter and rcu exit, un-
related to any interaction with wait-for-readers operations. We
quantify this cost by comparing the read-only throughput of the
tested implementations (Figure 7, which we analyze below). Sec-
ond, cache coherency related costs, that occur as a result of wait-
for-readers accessing book-keeping data that a reader updates. This
cost is not observable in a read-only workload. We measure the
cache coherency costs using simulated wait-for-readers versions
of the tested implementations, in which wait-for-readers performs
no memory accesses and only waits the same average number of
cycles that the real version waits for. The throughput of the simu-
lated wait-for-readers version thus accounts only for the cost im-
posed by waiting in wait-for-readers, without the cache coherency
overhead created by accesses to book-keeping data.

In the following, we analyze the overhead imposed by both of
the above factors.
Read-only cost The read-only cost is fixed, and so the overhead
it imposes diminishes as read operations become longer. Figure 7
quantifies this by comparing the read-only throughput of the tested
implementations. On the smaller tree (10K nodes), Tree RCU—

https://github.com/philip-w-howard/RP-Red-Black-Tree
https://github.com/philip-w-howard/RP-Red-Black-Tree

12 4 8 16 24 32 40 48 56 64
Threads

0

1

2

3

4

O
ps

/s
ec

on
d

×107 (a) Read-dominated (1M node tree)
EER-PRCU
D-PRCU
DEER-PRCU
Opt-Tree

Time RCU
Tree RCU
URCU

12 4 8 16 24 32 40 48 56 64
Threads

0.0

0.2

0.4

0.6

0.8

1.0

1.2

O
ps

/s
ec

on
d

×108 (b) Read-dominated (10K node tree)

12 4 8 16 24 32 40 48 56 64
Threads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

O
ps

/s
ec

on
d

×107 (c) Mixed (1M node tree)

12 4 8 16 24 32 40 48 56 64
Threads

0

1

2

3

4

5

O
ps

/s
ec

on
d

×107 (d) Mixed (10K node tree)

12 4 8 16 24 32 40 48 56 64
Threads

0.0

0.5

1.0

1.5

2.0

2.5

O
ps

/s
ec

on
d

×107 (e) Write-dominated (1M node tree)

12 4 8 16 24 32 40 48 56 64
Threads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

O
ps

/s
ec

on
d

×107 (f) Write-dominated (10K node tree)

Figure 5: Tree throughput: All curves but Opt-Tree plot different RCU-based CITRUS results, under the various workloads and tree sizes.

12 4 8 16 24 32 40 48 56 64
Threads

0
20
40
60
80

100
120

%

(a) Time spent in wait-for-readers (10K node tree)
Read-dominated

EER-PRCU
D-PRCU

DEER-PRCU
Time RCU

Tree RCU
URCU

12 4 8 16 24 32 40 48 56 64
Threads

102

103

104

105

106

C
yc

le
s

(lo
g)

(b) Wait-for-readers latency (10K node tree)
Read-dominated

12 4 8 16 24 32 40 48 56 64
Threads

0

20

40

60

80

100

%

(c) Time spent in wait-for-readers (10K node tree)
Write-dominated

12 4 8 16 24 32 40 48 56 64
Threads

102

103

104

105

106

C
yc

le
s

(lo
g)

(d) Wait-for-readers latency (10K node tree)
Write-dominated

Figure 6: Tree wait-for-readers overhead: Overall time spent in wait-for-readers and individual wait-for-readers latency.

which has no read-only cost—is the best performer, with 9% bet-
ter throughput than Opt-Tree, which imposes modest read-only
cost due to validation checks its traversal code performs. Time
RCU, EER-PRCU and DEER-PRCU have comparable overhead,
about 10% worse than Tree RCU. URCU performs worse than
them—0.65× worse than Time RCU. This is due to its imple-
mentation, which performs several thread-local storage accesses
in rcu enter and rcu exit. Finally, D-PRCU obtains 0.5× of Tree
RCU’s throughput, because its reads update the shared counter ta-
ble. In contrast, on the larger (1 million nodes) tree, D-PRCU’s ob-

tains only 13% worse throughput than Time RCU and EER-PRCU,
which in turn are only 5% worse than Tree RCU and Opt-Tree.
Cache coherency related costs Figure 8 depicts the throughput
of each implementation, normalized to its simulated wait-for-rea-
ders variant. Throughput decrease thus constitutes the overhead
imposed by cache misses due to reader/wait-for-readers interaction
in the real implementation. In the read-dominated workloads, this
overhead is negligible for all implementations. As the update rate—
and with it, wait-for-readers rate—increases, so does the cache-
related cost. Time RCU imposes an overhead of 15% (large tree)

12 4 8 16 24 32 40 48 56 64
Threads

0

1

2

3

4

O
ps

/s
ec

on
d

×107 (a) Read-only (1M node tree)
EER-PRCU
D-PRCU
DEER-PRCU
Opt-Tree

Time RCU
Tree RCU
URCU

12 4 8 16 24 32 40 48 56 64
Threads

0.0

0.5

1.0

1.5

2.0

O
ps

/s
ec

on
d

×108 (b) Read-only (10K node tree)

Figure 7: Tree read-only overhead: Throughput differences in a read-only workload expose any overhead on reads.

Read-dominated
1M tree

Mixed
1M tree

Write-dominated
1M tree

Read-dominated
10K tree

Mixed
10K tree

Write-dominated
10K tree

60

70

80

90

100

110

120

N
or

m
al

iz
ed

th
ro

ug
hp

ut
(%

)

Time RCU URCU EER-PRCU D-PRCU DEER-PRCU

Figure 8: Cache coherency related read-side overhead: To isolate overhead due to reader cache misses resulting from communication
with wait-for-readers, we show the throughput of each RCU-based version, normalized to when wait-for-readers waits for the same average
amount of cycles, but without performing any memory operations.

1 3 7 15 23 31 39 47 55 63 Geo mean
Readers

50

60

70

80

90

100

110

120

130

N
or

m
al

iz
ed

th
ro

ug
hp

ut
(%

)

(a) Lookup throughput
Time RCU Tree RCU URCU EER-PRCU D-PRCU DEER-PRCU

1 3 7 15 23 31 39 47 55 63 Geo mean
Readers

20

40

60

80

100

120

N
or

m
al

iz
ed

tim
e

(%
)

46
6.

7

43
9.

5

51
3.

7

67
9.

6

68
6.

4

73
8.

8

67
8.

9

72
5.

6

71
8.

8

70
8.

2

62
5.

1

13
9.

3

19
6.

8

23
9.

6

24
2.

9

27
0.

0

31
8.

8

33
4.

2

29
4.

7

21
2.

2

(b) Table expansion latency

Figure 9: Resizable hash table performance (normalized to Time RCU): N readers performing lookups concurrently with an expand.

to 25% (small tree). EER-PRCU has the same overhead, because
a wait-for-readers performs the same memory accesses as in Time
RCU—the predicate use only affects the decision of whether to
wait. URCU obtains lower overhead than Time RCU because its
wait-for-readers process is slower, and thus invalidates reader’s
data less often. In contrast to these implementations, D-PRCU
reads pay virtually no cost for interacting with wait-for-readers.
This is because D-PRCU pays the cache coherency costs in its read-
only mode due to the shared counter updates.

6.2 Resizeable Hash Table
Here, we use a benchmark simulating an overloaded hash table
(load factor 4), with 106 elements, being expanded. The benchmark

consists of N reader threads repeatedly performing lookups of
uniformly random keys selected from a range of size 2 × 106.
Concurrently to this, another thread performs a resizing expand
operation. We report median reader throughput and resize latency
from 5 experiments.

Figure 9 depicts the results (normalized to Time RCU), which
demonstrate the RCU tradeoffs. Similarly to CITRUS, Tree RCU
obtains the best read (lookup) throughput, outperforming Time
RCU by 10%. However, its resize latency is 7× that of Time
RCU. In contrast, resizing with EER-PRCU and DEER-PRCU
takes 15%–20% less time than in Time RCU in most concurrency
levels, with EER-PRCU resize taking 0.6× that of Time RCU at
63 readers. Despite this, lookup throughput with EER-PRCU and

DEER-PRCU is comparable to with Time RCU, although above 31
readers EER-PRCU lookups underperform Time RCU. Finally, D-
PRCU shows the fastest resize time—up to 0.4× that of Time RCU.
But it pays for this with an average 20% worse lookup throughput.

7. Related Work
Synchronization mechanisms RCU enables read/write concur-
rency in which readers are implemented simply—essentially as in
a sequential implementation—and with negligible synchronization
overhead. Alternative synchronization mechanisms fail to provide
these properties: Read/write locks [5] do not provide read/write
concurrency. Transactional memory [14] imposes aborts and retries
on readers [7]. Hand-crafted applications of locking or nonblock-
ing synchronization [13] can provide read/write concurrency [3,
12, 15], but result in complex implementations that are difficult to
prove correct.
RCU implementations We describe several commonly-used RCU
implementations in § 2.2. In addition, for code requiring shorter
grace periods, the Linux kernel uses SRCU [19]. SRCU restricts
waiting by subsystem (e.g, filesystem code need not wait for net-
working code). In contrast, PRCU can decrease waiting time within
a subsystem, by leveraging its semantics. The Mindicator [18]
is a nonblocking quiescence detection algorithm. It detects only
global quiescence, as with wait-for-readers. Like EER-PRCU,
both SRCU and the Mindicator require readers to post their arrival
in memory and issue a memory fence.
RCU-based algorithms RCU has been used to implement search
trees [2, 4, 16] and hash tables [27]. The CITRUS tree [2] is targeted
at supporting concurrent updates with RCU, demonstrating the
applicability of RCU as a generic synchronization mechanism.
Predicate use The use of predicates in order to maintain con-
sistency was originally suggested for databases. A predicate lock
enables a transaction to lock all the tuples that satisfy the predi-
cate [8]. Since predicate locks are used to enforce mutual exclusion,
the main difficulty in implementing them is the need to efficiently
determine if two predicates agree on a common value, i.e., conflict,
as conflicting locks cannot be held at the same time. In contrast,
we use predicates to manage synchronization between updates and
concurrent reads. In PRCU, conflicting predicates imply that two
wait-for-readers calls need to wait for common readers and so re-
quire no special handling.

8. Conclusion
We have presented PRCU, an RCU variant that allows an update
to wait only for reads whose consistency it affects. PRCU thus
significantly reduces update overheads, facilitating the use of RCU
synchronization in concurrent data structures that require high-
throughput and scalable updates.

We have described several PRCU implementations, highlight-
ing trade-offs between read overhead and short wait-for-readers
time. Understanding these tradeoffs is interesting future work: can
one devise PRCU algorithms with short wait-for-readers time with
less read overhead, or is this provably impossible?

Acknowledgements
We thank Hagit Attiya for her encouragement, support, and for the
many insightful discussions. We thank the anonymous reviewers
for their thoughtful remarks.

This work was supported by the Israel Science Foundation
(grants 1227/10 and 1749/14) and by Yad-HaNadiv foundation.
Maya Arbel is supported in part by the Technion Hasso Platner
Institute (HPI) Research School. Adam Morrison is supported in
part at the Technion by an Aly Kaufman Fellowship.

References
[1] Intel 64 and IA-32 Architectures Software Developers Manual, Vol-

ume 3: System Programming Guide, June 2013.
[2] M. Arbel and H. Attiya. Concurrent Updates with RCU: Search Tree

As an Example. In PODC, 2014.
[3] N. G. Bronson, J. Casper, H. Chafi, and K. Olukotun. A Practical

Concurrent Binary Search Tree. In PPoPP, 2010.
[4] A. T. Clements, M. F. Kaashoek, and N. Zeldovich. Scalable Address

Spaces Using RCU Balanced Trees. In ASPLOS, 2012.
[5] P. J. Courtois, F. Heymans, and D. L. Parnas. Concurrent Control with

“Readers” and “Writers”. CACM, 14(10), Oct. 1971.
[6] M. Desnoyers, P. E. McKenney, A. S. Stern, M. R. Dagenais, and

J. Walpole. User-Level Implementations of Read-Copy Update. IEEE
TPDS, 23(2), 2012.

[7] D. Dice, O. Shalev, and N. Shavit. Transactional locking II. In DISC,
2006.

[8] K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger. The Notions
of Consistency and Predicate Locks in a Database System. CACM, 19
(11), Nov. 1976.

[9] K. Fraser. Practical lock-freedom. PhD thesis, University of Cam-
bridge, Computer Laboratory, February 2004.

[10] A. Gotsman, N. Rinetzky, and H. Yang. Verifying concurrent memory
reclamation algorithms with grace. In ESOP, 2013.

[11] D. Guniguntala, P. E. McKenney, J. Triplett, and J. Walpole. The
read-copy-update mechanism for supporting real-time applications on
shared-memory multiprocessor systems with Linux. IBM Systems
Journal, 47(2):221–236, May 2008.

[12] S. Heller, M. Herlihy, V. Luchangco, M. Moir, W. N. Scherer, and
N. Shavit. A lazy concurrent list-based set algorithm. In OPODIS,
2006.

[13] M. Herlihy. Wait-free synchronization. ACM TOPLAS, 13(1):124–
149, Jan. 1991.

[14] M. Herlihy and J. E. B. Moss. Transactional memory: architectural
support for lock-free data structures. In ISCA, 1993.

[15] M. Herlihy and N. Shavit. The Art of Multiprocessor Programming.
Morgan Kaufmann Publishers Inc., 2008.

[16] P. W. Howard and J. Walpole. Relativistic red-black trees. Concur-
rency and Computation: Practice and Experience, 2013.

[17] S. V. Howley and J. Jones. A Non-blocking Internal Binary Search
Tree. In SPAA, 2012.

[18] Y. Liu, V. Luchangco, and M. Spear. Mindicators: A Scalable Ap-
proach to Quiescence. In ICDCS, 2013.

[19] P. E. McKenney. Sleepable RCU. http://lwn.net/Articles/
202847/, October 2006. Linux World News.

[20] P. E. McKenney. Hierarchical RCU. http://lwn.net/Articles/
305782/, November 2008. Linux World News.

[21] P. E. McKenney and J. D. Slingwine. Read-copy update: Using
execution history to solve concurrency problems. In Parallel and
Distributed Computing and Systems, 1998.

[22] P. E. McKenney, H. J. Boehm, and L. Crowl. C++ Data-Dependency
Ordering: Atomics and Memory Model. Technical Report N2664,
ISO/IEC JTC1 SC22 WG21, 2008.

[23] T. Nakaike and M. M. Michael. Lock Elision for Read-only Critical
Sections in Java. In PLDI, 2010.

[24] A. Natarajan and N. Mittal. Fast Concurrent Lock-free Binary Search
Trees. In PPoPP, 2014.

[25] S. Owens, S. Sarkar, and P. Sewell. A Better x86 Memory Model:
X86-TSO. In TPHOLs, 2009.

[26] W. Ruan, Y. Liu, and M. Spear. Boosting Timestamp-based Transac-
tional Memory by Exploiting Hardware Cycle Counters. ACM TACO,
10(4), Dec. 2013.

[27] J. Triplett, P. E. McKenney, and J. Walpole. Resizable, scalable,
concurrent hash tables via relativistic programming. In USENIX ATC,
2011.

http://lwn.net/Articles/202847/
http://lwn.net/Articles/202847/
http://lwn.net/Articles/305782/
http://lwn.net/Articles/305782/

	Introduction
	Background: RCU
	RCU Interface and Terminology
	RCU Implementations

	Predicate RCU (PRCU)
	PRCU Interface

	PRCU Implementations
	EER-PRCU
	D-PRCU
	DEER-PRCU

	Applying PRCU to Algorithms
	Resizeable Hash Table
	The Citrus Tree

	Evaluation
	Citrus Tree
	Resizeable Hash Table

	Related Work
	Conclusion

