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Abstract. We present a code transformation for concurrent data struc-
tures, which increases their scalability without sacrificing correctness.
Our transformation takes lock-based code and replaces some of the lock-
ing steps therein with optimistic synchronization in order to reduce con-
tention. The main idea is to have each operation perform an optimistic
traversal of the data structure as long as no shared memory locations are
updated, and then proceed with pessimistic code. The transformed code
inherits essential properties of the original one, including linearizability,
serializability, and deadlock freedom.
Our work complements existing pessimistic transformations that make
sequential code thread-safe by adding locks. In essence, we provide a
way to optimize such transformations by reducing synchronization bot-
tlenecks (for example, locking the root of a tree). The resulting code
scales well and significantly outperforms pessimistic approaches. We fur-
ther compare our synthesized code to state-of-the-art data structures
implemented by experts. We find that its performance is comparable to
that achieved by the custom-tailored implementations. Our work thus
shows the promise that automated approaches bear for overcoming the
difficulty involved in manually hand-crafting concurrent data structures.

1 Introduction

The steady increase in the number of cores in today’s computers is driving
software developers to allow more and more parallelism. An important focal
point for such efforts is scaling the concurrency of shared data structures, which
are often a principal friction point among threads. Many recent works have been
dedicated to developing scalable concurrent data structures (e.g., [8, 20, 40,
12, 15, 10, 5, 22, 11, 32, 25, 38]), some of which are widely used in real-world
systems [44].

Each of these projects generally focuses on a single data structure (e.g., a bi-
nary search tree [11] or a queue [38]) and manually optimizes its implementation.
These data structures are developed by concurrency experts, typically PhDs or
PhD candidates, and proving their correctness is painstaking; for example, the
proofs of [10, 22] are 31 and 20 pages long, respectively. The rationale behind
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dedicating so much effort to one data structure is that it is generic and can be
used by many applications. Nevertheless, systems often use data structures in
unique ways that necessitate changing or extending their code (e.g., [2, 3, 43, 46]),
in which cases custom-tailored implementations may not meet the requirements.
Here, we propose an approach to facilitate this labor-intensive process, making
scalable synchronization more readily available.

Specifically, we present in Section 2 an algorithm for a source-to-source code
transformation that takes a lock-based concurrent data structure implementa-
tion as its input and generates more scalable code for the same data structure
via judicious use of optimism. Our approach combines optimism and pessimism
in a practical way. Like some previous hand-crafted solutions [31], we exploit
the common access pattern in data structure operations, (e.g., tree insertion or
deletion), which typically begin by traversing the data structure (to the inser-
tion or deletion point), and then perform local updates at that location. Our
solution replaces locks in the initial read-only traversal with optimistic synchro-
nization, and performs updates using the original lock-based code. It may thus
be seen as a form of software lock elision for read-only prefixes of operations
(transactions). Combining optimism and pessimism allows us to achieve “the
best of both worlds” – while the optimistic traversal increases concurrency and
eliminates bottlenecks, the use of pessimistic updates saves the overhead associ-
ated with speculative or deferred shared memory updates, (as occurs in software
transactional memory (STM) [30]).

In the full version of the paper [9] we show that our transformation preserves
the external behavior (e.g., linearizability, serializability, and deadlock-freedom)
of the original lock-based code; Moreover, our transformation preserves disjoint
access parallelism [34], (the property that threads that access disjoint data ob-
jects do not contend on low level shared memory locations), as it refrains from
introducing a shared global clock (as some STM systems do [45]) or other sources
of contention.

One important use case for our transformation is to apply it in conjunc-
tion with automatic lock-based parallelization mechanisms [26, 36]. The latter
instrument sequential code and add fine-grained locks that ensure its safety in
concurrent executions. Our evaluation shows that, by themselves, solutions of
this sort may scale poorly. This is due to synchronization bottlenecks, e.g., the
root of a tree, which is locked by all operations. By subsequently applying our
transformation, one can optimize the lock-based code they produce, yielding an
end-to-end approach to scalable parallelization of sequential code.

In Section 3 we evaluate our transformation by generating an unbalanced
search tree and a treap (randomized balanced search tree). We synthesize these
data structures from sequential implementations by applying first the algorithm
of [26] (domination locking) to create lock-based code, and then our transfor-
mation. We evaluate the scalability of the resulting code in a range of workload
scenarios on a 32-core machine. In all cases, the lock-based implementations do
not scale – their throughput remains flat as the number of running threads in-
creases. In contrast, the code generated by our transformation is scalable, and



its throughput continues to grow with the number of threads. We further use
the Synchrobench framework [27] to compare our synthesized code to data struc-
tures that were recently hand-crafted by experts in the field [20, 11, 1, 22, 15], as
well as a state-of-the-art STM [45]. Our results show that the implementations
we have generated perform comparably to custom-tailored solutions.

The advantage of our approach is in its generic nature, which allows us to
parallelize existing code without requiring experts to perform manual optimiza-
tions. Other generic approaches we are familiar with are domination locking [26]
and STM [45], both of which perform worse than our transformed code in our
experiments. Further discussion of related work appears in Section 4.

To conclude, this paper demonstrates that generic synchronization, based on
a careful combination of optimism and pessimism, is a promising approach for
bringing legacy code to emerging computer architectures. While this paper illus-
trates the method for tree data structures, we believe that the general direction
is more broadly applicable, and maybe used with a variety of locking schemes,
such as two phase locking. Section 5 concludes the paper and touches on some
directions for future work.

2 Transformation

We present an algorithm for a source-to-source transformation, whose goal is to
optimize the code of a given data structure implemented using lock-based con-
currency control. In Section 2.1, we detail our assumptions about the given code
and the locks it uses. Section 2.2 overviews our general approach to combining
optimism and pessimism, while Section 2.3 details how the code is instrumented.

2.1 Lock-based Data Structures

A data structure defines a set of operations that may be invoked by clients of
the data structure, potentially concurrently. Operations have parameters and
local (private) variables. The operations interact via shared memory variables,
which are also called shared objects. Each shared object supports atomic read
(load) and write (store) instructions. More formal definitions appear in the full
version [].

In addition, each shared object is associated with a lock, which can be unique
to the object or common to several (or even all) objects. The object supports
atomic lock and unlock instructions. Locks are exclusive (i.e., a lock can be held
by at most one thread at a time), and blocking. We assume that in the given
code every (read or write) access by an operation to a shared object is performed
when the executing thread holds the lock associated with that object.

The given code only uses the lock and unlock instructions, while the trans-
formed code can apply in addition atomic non-blocking tryLock and isLocked-
ByAnother instructions: tryLock returns false if the lock is currently held by
another thread, otherwise it acquires the lock and returns true; isLockedByAn-
other returns true if and only if the lock is currently held by another thread.



2.2 Combining Optimism and Pessimism

Optimistic concurrency control is a form of synchronization, which accesses
shared variables without using locks in the hope that they will not be modified
by others before the end of the operation (or more generally, the transaction).
To verify the latter, optimistic concurrency control relies on validation, which is
typically implemented using version numbers. If validation fails, the operation
restarts. Optimistic execution of update operations requires either performing
roll-back (reverting variables to their old values) upon validation failure, or de-
ferring writes to commit time; both approaches induce significant overhead [13].
We therefore refrain from speculative shared memory updates.

The main idea behind our approach is to judiciously use optimistic synchro-
nization only as long as an operation does not update shared state; we use a
standard approach based on version numbers to allow validation of optimistic
reads. Once an operation writes to shared memory, we revert to pessimistic (lock-
based) synchronization. In other words, we rely on validation in order to render
redundant locks that would have been acquired and freed before the first up-
date. This scheme is particularly suitable for data structures, since the common
behavior of their operations is to first traverse the data structure, and then per-
form modifications. Since the read only prefix has no side effects we can sandbox
it by catching exceptions and infinite loops, and defer validation to the end of
the traversal.

Conceptually, our approach thus divides an operation into three phases: an
optimistic read-only phase, a pessimistic update phase and a validation phase
that conjoins them. The read-only phase traverses the data structure without
taking any locks, while maintaining in thread-local variables sufficient informa-
tion to later ensure the correctness of the traversal. The read phase is invisible
to other threads, as it updates no shared variables. The update phase uses the
original pessimistic (lock-based) synchronization, with the addition of updating
version numbers. The validation phase bridges between the optimistic and pes-
simistic ones. It first locks the objects for which a lock would have been held
at this point by the original locking code, and then validates the correctness of
the read-only phase. This allows the update phase to run as if an execution of
the original pessimistic synchronization took place. If the validation fails, the
operation restarts. In order to avoid livelock, we set a threshold on the number
of restarts. If the threshold is exceeded, the code falls back on pessimistic exe-
cution. We show below that it is safe to do so, since our semi-optimistic code is
compatible with the fully pessimistic one.

Phase Transition In many cases, the transition from the read-only phase to the
update phase occurs at a statically-defined code location. For example, many
data structure operations begin with a read-only traversal to locate the key of
interest, and when it is found, proceed to execute code that modifies the data
structure. This is the case in all the examples we consider in Section 3 below.

More generally, it is possible to switch from the optimistic read-only execution
(via the validation phase) to pessimistic execution at any point before the first



update. Moreover, the phase transition point can be determined dynamically at
run time.

One possible way to dynamically track the execution mode is using a flag
opt, initialized to true, indicating the optimistic phase. Every shared memory
update operation is then instrumented with code that checks opt, and if it is
true, executes the validation phase followed by setting opt to false and continuing
the execution from the same location.

2.3 Transforming the Code Phases

We now describe how we synthesize the code for each of the phases. We first
describe the regular three-phase flow, and then continue with describing the
exceptional cases.

Normal Flow We illustrate the transformation for a simple code snippet that
adds a new element as the third node in a linked list. Each node is associated with
a lock. The original and transformed code are provided in Figure 1. The latter
uses the tracking and validation functions in Figures 2 and 3, resp. For clarity
of exposition, we present a statically instrumented version, without tracking the
phases using opt.

Our transformation instruments each lock with an additional field version.
We assume each object supports getVersion and incVersion instruction to read
and increment the version number of the lock associated with the object. We
invoke incVersion when holding the lock, and are therefore are not concerned
about contention. Note that each lock has its own version, i.e., version numbers
of different locks are independent of each other.

Read-only Phase In this phase the executing thread is invisible to other threads,
i.e., avoids contention on shared memory both in terms of writing and in terms of
locking. During this phase, our synchronization maintains two thread-local multi-
sets: lockedSet and readSet. The lockedSet tracks the objects that were supposed
to be locked by the original synchronization. The readSet tracks versions of all
objects read by the operation, in order to allow us to later validate that the
operation has observed a consistent view of shared memory.

At the beginning of the read-only phase, we insert code that initializes locked-
Set and readSet to be empty (see lines 2-3 of Figure 1b). Throughout the read-
only phase, (i.e., when opt is true with dynamic phase transitions), we replace
every lock and unlock instruction with the corresponding code in Table 1. A
lock instruction on object o is replaced with code that tracks the object and the
version of its lock in lockedSet and readSet (see Figure 2). An unlock instruction
on object o is replaced with code that removes o from lockedSet (see lines 2-13
of Figure 1b).

In Figure 2 (lines 5-6), we use an eager validation scheme3: If the object
already exists in readSet, we check that the current version of its lock is equal

3 Eager validation is not required for correctness.



1: FUNCTION addThird(List
list, Node new)
---------- . read-only phase

2:
3:
4: list.lock()
5: Node prev = list.head
6: prev.lock()
7: list.unlock()
8: Node succ = prev.next
9: succ.lock()
10: prev.unlock()
11: prev = succ
12: succ = succ.next
13: succ.lock()

----------
14:
15:
16:
17:
18:
19:
20:
21:

---------- . update phase
22: prev.next = new
23: new.lock()
24: new.next = succ
25:
26: prev.unlock()
27:
28: new.unlock()
29:
30: succ.unlock()

(a) Code with original locking

1: FUNCTION addThird(List list,
Node new)
---------- . read-only phase

2: lockedSet.init()
3: readSet.init()
4: if !track(list) then goto 1
5: Node prev = list.head
6: if !track(prev) then goto 1
7: lockedSet.remove(list)
8: Node succ = prev.next
9: if !track(succ) then goto 1
10: lockedSet.remove(prev)
11: prev = succ
12: succ = succ.next
13: if !track(succ) then goto 1

---------- . validation phase
14: read fence
15: for all obj in lockedSet do
16: if !obj.tryLock() then
17: unlockAll()
18: goto 1
19: if !validateReadSet() then
20: unlockAll()
21: goto 1

---------- . update phase
22: prev.next = new
23: new.lock()
24: new.next = succ
25: prev.incVersion
26: prev.unlock()
27: new.incVersion
28: new.unlock()
29: succ.incVersion
30: succ.unlock()

(b) The code produced by our transformation

Fig. 1: Code transformation example. The synchronization code is in bold.

1: FUNCTION track(obj)
2: lockedSet.add(obj)
3: long ver = obj.getVersion()
4: readSet.add(〈obj,ver〉)
5: if 〈obj,v〉 ∈readSet and v!=ver then return false

6: if obj.isLockedByAnother() then return false

7: return true

Fig. 2: In read-only phase, locking is replaced by tracking locks and read objects’
versions.



1: FUNCTION validateReadSet()
2: for all 〈obj,ver〉 in readSet do
3: if obj.isLockedByAnother() then
4: return false . validation failed (locked object)

5: if obj.getVersion() != ver then
6: return false . validation failed (different version)

7: retrun true . validation succeed

Fig. 3: Read set validation: verify that objects are unlocked and their versions
are unchanged.

Original code Transformed Code
x.lock() if !track(x) then goto S

x.unlock() lockedSet.remove(x)

Table 1: Transformation for read-only phase: each locking instruction (left col-
umn) is replaced with the corresponding code on the right; S denotes the begin-
ning of the operation.

to the version in readSet ; and if the versions are different the operation restarts
(line 5). Similarly, it is checked to be unlocked, and the operation restarts if it
is locked (line 6).

Although it only accesses thread-local data structures, lock tracking induces
a certain overhead due to the need to search a lock in the lockedSet in order
to unlock it. (In our experiments presented below, in large data structures, this
overhead slows operations down by up to 40%). We suggest some optimizations
to mitigate this cost. First, we observe that the lockedSet does not need to
be tracked in read-only operations, which a compiler can easily detect. We can
further avoid this overhead in update operations in certain cases by relying on the
structure of the transformed code. For example, if the lock-based code is created
from sequential code using domination locking [26], then at any given time in
the read phase, it holds locks on a well-defined set of objects – the ones currently
pointed by the operation’s local variables. When applying our transformation to
code generated by this scheme, we can optimize it to remove lock-tracking, and
instead populate the lockedSet with the appropriate locks immediately before
executing the validation phase.

Validation Phase The code of the validation phase is invoked between the read-
only phase and the update phase (lines 14-21 of Figure 1b). It locks the objects
that are left in lockedSet and validates the objects in readSet. To avoid deadlocks,
the locks are acquired using a tryLock instruction. If any tryLock fails, the code
unlocks all previously acquired locks and restarts from the beginning (lines 15-
18).

The function validateReadSet in Figure 3 verifies that the objects in the read
set have not been updated. The function checks that each object in the read



set is not locked by another thread, and that the current version of the lock
associated with the object matches the version saved in the readSet. This check
guarantees that the object was not locked from the time it was read until the
time it was validated. Since operations write only to locked objects, it follows
that the object was not changed. This readSet validation can be viewed as a
double collect [4] of all objects accessed by the read-only phase. The operation
is restarted if the validation fails (lines 19-21).

We assume that, following standard practice in lock implementations, the
function isLockedByAnother imposes a memory fence (barrier). This ensures
that the lock and version are read during track before the object’s value is read
optimistically during the read-only phase. To ensure that the second read of the
lock and version, during the validation phase, succeeds the optimistic read of
the object’s value, we precede the validation phase with a memory fence as well
(line 14). Note that it suffices to impose a read fence (sometimes called acquire or
load fence) prior to the validation as well as during isLockedByAnother, because
this part of the code does not include writes to shared memory.

Update Phase In this phase our transformation preserves the original locking
while maintaining the versions of the objects, i.e., the version of an object o is
incremented every time o is unlocked. Here, (i.e., in case opt is false with dynamic
phase transitions), before each unlock instruction x.unlock() we insert the
code x.incVersion() . An example is shown in lines 22-30 of Figure 1b.

Exceptions from Regular Flow The read phase does not validate past reads
during its executions (other than when re-reading the same variable). As a re-
sult, it may observe an inconsistent state of shared memory, which may lead to
infinite loops or spurious exceptions (as explained, e.g., in [30]). We avoid such
infinite loops using a timeout. If the timeout expires before the read-only phase
completes, read set validation takes place (via the function validateReadSet). If
the validation fails, the operation is restarted. This is realized by inserting code
that examines the timeout in every loop iteration in the original code. Similarly,
we avoid spurious exceptions by catching all exceptions and performing valida-
tion. Here too, if the validation fails, the operation is restarted. Otherwise, the
exception is handled as in the original code.

Our sandboxing relies on properties of managed languages like Java or C#:

1. We can identify all instructions that may update shared memory and end
the read phase before they occur.

2. The ability to capture all exits from a block via the try-finally mechanism
ensures that we never exit the read phase without performing validation.

3. The code is not self-modifying and hence the tracking and validation code
is executed as intended.

4. The speculative execution does not alter the references to the thread-local
variables we introduce (readSet, lockedSet) since they are constant references
to well-typed objects.
Hence, our tracking and validation code executes correctly.



While recent work [17] has shown that differing validation to the end of a
transaction can be unsafe, this problem does not occur in our solution. The key
problem shown there is that access to the object on which the conflict is checked
(namely the lock) is deferred until after other unchecked shared accesses, which
could potentially be inconsistent and cause the lock not to be accessed. In our
case, on the other hand, all accesses to shared data are recorded for validation
purposes. If an object that should be accessed (like the lock in the lock elision
case) is not accessed because of earlier conflicts, these earlier conflicts will be
detected and the transaction will abort.

Note that, using our transformation, the shared state at the end of the val-
idation phase is identical to the state that would have been reached had the
code been executed pessimistically from the outset. Hence, the three-phase ver-
sion of the code is compatible with the instrumented pessimistic version. This
means that if the optimistic phase is unsuccessful for any reason, we can always
fall back on the pessimistic version. Moreover, we can switch from optimistic
to pessimistic synchronization at any point during the read phase. We use this
property in two ways. First, we avoid livelocks by limiting the number of restarts
due to conflicts: The validation phase tracks the number of restarts in a thread-
local variable. If this number exceeds a certain threshold, we perform the entire
operation optimistically.

Second, this property offers the optimistic implementation the liberty of fail-
ing spuriously, even in the absence of conflicts, because it can always fall back on
the safe pessimistic version of the code. One can take advantage of this liberty,
and implement the readSet using a constant size array. In case the array becomes
full, the optimistic version cannot proceed, but there is no need to start the op-
eration anew. Instead, one can immediately perform the validation phase, which,
if successful, switches to a pessimistic modus operandi, after having acquired all
the needed locks.

3 Evaluation

We evaluate the performance of our approach on search trees supporting insert,
delete, and get operations. We compare the throughput of our approach to fully
pessimistic solutions applying fine-grain locking, solutions based on software
transactional memory, and hand-crafted state-of-the-art data structure imple-
mentations.

Methodology We use the micro-benchmark suite Synchrobench [27], configured as
follows. Each experiment consists of 5 trials. A trial is a five second run in which
each thread continuously executes randomly chosen operations drawn from the
workload distribution, with keys selected uniformly at random from the range
[0, 2 ·106]. Each trial is preceded by initiating a new data structure with 106 keys
and a warm-up of five seconds. Our graphs present the average throughput over
all trials. We consider three representative workloads distributions: a read-only
workload comprised of 100% lookup operations, a write-dominated workload



consisting of insert and delete operations (50% each), and a mixed workload
with 50% lookups, 25% inserts, and 25% deletes.

Platform All implementations are in Java. We ran the experiments on a dedi-
cated machine with four Intel Xeon E5-4650 processors, each with 8 cores, for
a total of 32 threads (with hyper-threading disabled). We used Ubuntu 12.04.4
LTS and Java Runtime Environment (build 1.7.0 51-b13) using the 64-Bit Server
VM (build 24.51-b03, mixed mode).

Implementations We start from textbook sequential implementations of an un-
balanced internal binary tree and a treap [7]. We next synthesize concurrent lock-
based code by (manually) applying the domination locking technique [26] to the
sequential data structures. The resulting algorithms are denoted Lock-Tree and
Lock-Treap. Then, we manually apply our lock-removal transformation to the
reference implementations by following the algorithm line-by-line (requiring no
understanding of the base code) to get our semi-optimistic versions of the code,
which we call LR-Tree and LR-Treap, respectively. Note that this solution does
not track the lockedSet for read-only operations and does not use eager validation
of version numbers. Finally, we apply the optimization described in Section 2.3,
which eliminates explicit tracking of the lockedSet in update operations, and
instead locks all objects the thread holds a pointer to in the validation phase;
this optimization is applicable since our parallel implementation is synthesized
using domination locking. The resulting algorithms are denoted Opt-LR-Tree
and Opt-LR-Treap.

For the competition, we parallelize the sequential implementations also using
Deuce [24], a Java implementation of TL2 [18]. The resulting algorithms are
denoted STM-Tree and STM-Treap. We further compare our implementations
to their hand-crafted state-of-the-art counterparts listed in Table 2.

Unbalanced Balanced

LO-Tree Locked-based [20] LO-AVL Lock-based relaxed AVL [20]
LF-Tree Lock-free [22] Snap-Tree Lock-based relaxed AVL [11]

CF-Tree Contention-friendly tree [15]
Skiplist Java lock-free skiplist

Table 2: Hand-crafted state-of-the-art data structures. The code of LO-Tree was
provided by the authors, all other implementations provided by Synchrobench.

We also measured the performance of global lock-based implementations. In
all workloads, the results were identical or inferior to those achieved by pes-
simistic fine-grain locking. We hence omitted these results to avoid obscuring
the presentation.

Results Figures 4 and 5 show the throughput of unbalanced and balanced data
structures, resp. We see that our semi-optimistic solution, both optimized and



unoptimized, is far superior to the fully-pessimistic automated approach; it suc-
cessfully overcomes the bottlenecks associated with lock contention in Lock-Tree
and Lock-Treap.

Our approach also outperforms STM by 1.5x to 2.5x. The additional overhead
of STM most likely stems from two reasons: deferring writes to commit time,
and using a global clock to ensure a consistent view of the read set. The latter
is done in order to satisfy opacity [29], which we avoid by “sandboxing”. In our
experiments, the code never incurred a spurious exception or timeout due to
inconsistent reads, and so the sandboxing was not associated with a performance
penalty.

Our solution comes close to custom-tailored implementations, and the opti-
mized version is even superior to some of them. The throughput of our read-only
operations is up to 1.5x lower than that achieved by the best-in-class. By profil-
ing the code, we learned that the bulk of this overhead stems from the need to
track all read objects, which is inherent to our transformation. This is in contrast
with the hand-crafted implementations, which have small overhead on reads that
complete without any retries. In workloads that include update operations, our
solution is up to 2.2x slower. This stems from tracking read and locked sets and
not from retries as the percentage of retries is less than 1%.
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4 Related Work

Concurrent Data Structures Many sophisticated concurrent data structures (e.g.,
[8, 20, 40, 12, 15, 10, 5, 22, 11, 32, 25, 38]) were developed and used in concur-
rent software systems [44]. Implementing efficient synchronization for such data
structures is considered a challenging and error-prone task [44, 19, 35]. As a
result, concurrent data structures are manually implemented by concurrency ex-
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perts. This paper shows that (in some cases) an automatic algorithm can produce
synchronization that is comparable to synchronization implemented by experts.

Lock Inference Algorithms There has been a lot of work on automatically in-
ferring locks for transactions. Most algorithms in the literature infer locks that
follow the two-phase locking protocol [36, 23, 28, 14, 33, 16]. Our approach
can potentially be used to optimize the synchronization produced by these algo-
rithms. For example, for algorithms that employ a two-phase variant in which all
locks are acquired at the beginning of a transaction (e.g., [28, 14]), our approach
may be used to defer the locking (e.g., to just before the first write operation)
and even to eliminate some of the locking steps. We demonstrate the benefit
of combining our transformation with such algorithms by using the domination
locking protocol [26] to produce efficient concurrency control for dynamic data
structures.

Transactional Memory Transactional memory approaches (TMs) dynamically
resolve inconsistencies and deadlocks by rolling back partially completed trans-
actions. Unfortunately, in spite of a lot of effort and many TM implementa-
tions (see [30]), existing TMs have not been widely adopted due to various con-
cerns [21, 13, 37], including high runtime overhead, poor performance and limited
ability to handle irreversible operations. Modern concurrent programs and data
structures are typically based on hand-crafted synchronization, rather than on
a TM approach [44].

Lock Elision Our transformation is inspired by the idea of sequential locks [37]
and the approach presented in [39], which replace locks with optimistic con-
currency control in read-only transactions. But in contrast to these works, we
handle read-only prefixes of transactions (operations) that do update the shared
memory. In fact, as shown in Section 3, our approach is best suited for update-
dominated workloads. Moreover, using these approaches for a highly-contended



data structure (as in Section 3) is likely to provide limited performance, because
each update transaction causes many read-only transactions to abort.

Other works have proposed using transactional memory in order to elide
locks from arbitrary critical sections, and fall back on lock-based execution in
cases of aborts (e.g., [41, 42, 6]). In contrast to our approach, however, lock
elision does not combine speculative and non-speculative execution within the
same transaction.

5 Discussion

The development of scalable concurrent programs today heavily relies on custom-
tailored implementations, which require painstaking correctness proofs. In this
paper, we have shown a relatively simple transformation that can facilitate this
labor-intensive process, and thus make scalable synchronization more readily
available. The input for our transformation is a conventional lock-based concur-
rent program, which may be either constructed manually or synthesized from
sequential code. Our source-to-source transformation then makes judicious use
of optimism in order to eliminate principal concurrency bottlenecks in the given
program and improve its scalability.

We have illustrated our method for unbalanced and balanced search trees.
The transformed code performed significantly better than the original lock-based
one, and scaled comparably to hand-crafted implementations that had taken
considerably more effort to produce. In these examples, we have applied our
transformation manually. An interesting direction for future work would be to
create a tool that automatically applies our transformation at compile time.

Our approach makes use of a common pattern in data structures, where an
operation typically begins with a long read-only traversal, followed by a handful
of (usually local) modifications. A promising direction for future work is to try
and exploit similar patterns in order to parallelize or remove locks in other
types of code (not data structures), for example, programs that rely on two-
phase locking. Furthermore, for programs that follow different patterns, other
combinations of optimism and pessimism may prove effective.

Finally, there still remains a gap between the performance achievable by
manually optimized solutions and what we could achieve automatically. Our
algorithm induces inherent overhead for tracking all operations in the read-only
phase for later verification. In specific data structures, these checks might be
redundant, but it is difficult to detect this automatically. We believe that it
may well be possible to bridge the remaining performance gap using computer-
assisted optimizations. For example, a programmer may provide hints regarding
certain invariants that are always preserved in the code, in order to eliminate
the need for tracking some values for later validation.
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