
Concurrent Updates with RCU: Search Tree as an Example∗

(Version with Additional Proofs)

Maya Arbel
Department of Computer Science

Technion
mayaarl@cs.technion.ac.il

Hagit Attiya
Department of Computer Science

Technion
hagit@cs.technion.ac.il

ABSTRACT
Read copy update (RCU) is a novel synchronization mech-
anism, in which the burden of synchronization falls com-
pletely on the updaters, by having them wait for all pre-
existing readers to finish their read-side critical section.
This paper presents Citrus, a concurrent binary search
tree (BST) with a wait-free contains operation, using RCU
synchronization and fine-grained locking for synchronization
among updaters. This is the first RCU-based data structure
that allows concurrent updaters. While there are method-
ologies for using RCU to coordinate between readers and up-
daters, they do not address the issue of coordination among
updaters, and indeed, all existing RCU-based data struc-
tures rely on coarse-grained synchronization between up-
daters.

Experimental evaluation shows that Citrus beats previ-
ous RCU-based search trees, even under mild update con-
tention, and compares well with the best-known concurrent
dictionaries.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming—Concurrent programming ; F.1.2 [Computation By
Abstract Devices]: Modes of Computation—Parallelism
and concurrency

General Terms
Algorithms, Architecture

Keywords
Shared memory; internal search tree; read-copy-update

1. INTRODUCTION
∗This research is supported by Yad-HaNadiv foundation and
the Israel Science Foundation (grant number 1227/10).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PODC’14, July 15–18, 2014, Paris, France.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

The traditional approach to synchronization between
readers and writers allows concurrency among readers, but
excludes readers when a writer is executing, e.g., through a
readers/writer lock. An alternative, contemporary approach
is presented by read copy update (RCU) [24], a distinc-
tive synchronization mechanism favoring read-only opera-
tions even further, by allowing them to proceed even while
writers are modifying the data they are reading. Instead,
the read-side critical section is wrapped by the rcu read lock
and rcu read unlock functions; an additional synchronize rcu
function can be used by a writer as a barrier ensuring that
all preceding read-side critical sections complete. In typi-
cal RCU usage, the burden of synchronization is placed on
updates, who can wait for all pre-existing readers to finish
their read-side critical section.

RCU is used extensively within the Linux kernel [22],
mostly to facilitate memory reclamation [14, 23]. However,
its potential for concurrent programming remained unex-
ploited. Although several RCU-based data structures have
been proposed, for example, search trees and hash tables [7,
20, 28, 29], they all do not allow concurrent updates, either
pessimistically, using a coarse-grained lock [7], or optimisti-
cally, using transactional memory [20]. At best, the data
structure is partitioned into segments, e.g., buckets in a hash
table [29], each guarded by a single lock.

This leaves unanswered the question of coordination be-
tween concurrent updates to the data structure, while using
RCU, which is the topic of this paper.

A natural approach for supporting concurrent updates is
to employ fine-grained locks, acquired and released accord-
ing to some locking policy, e.g., two-phase locking [12] or
hand-over-hand locking [3, 27]. We found that these fine-
grained approaches fail to ensure consistent views for read-
only operations that access several items in the data struc-
ture, e.g., partial snapshots [2] or other iterators [26]. Fig-
ure 1 shows an example in which two readers, r1 and r2, at-
tempt to collect the leaves, by in-order traversal, while two
updates delete leaves 9 and 12. In (a), r2 already traversed
the left sub-tree while r1 has not yet started its traversal.
After 9 is deleted (b), r1 finishes traversing the tree while
r2 did not take additional steps, and 12 is deleted before
both readers complete (c). Since each reader may observe
a different permutation of the writes to the data structure,
the values returned by r1 and r2 are such that they observed
the updates in different order. This means that without ad-
ditional iterations or interaction, there is no consistent way
to order the updates and the readers, complicating the task
of designing a concurrent data structure.

10

7

9

15

12

10

7 15

12

10

7 15

r1 = {}
r2 = {9}

r1 = {7, 12}
r2 = {9} r2 = {9, 15}

r1 = {7, 12}

r1 r2

r1

r2

(a) (b) (c)

Figure 1: An example in which RCU readers may observe a
different permutation of the writes to the data structure.

Nevertheless, this example (and others that we found)
hints that the difficulty is in having read-only operations
that need to atomically access several locations. The
counter-examples do not hold when the read-only operation
only searches for a particular data item, e.g., in a dictionary.

This observation led to the design of Citrus, a binary
search tree implementing a dictionary with concurrent up-
dates (insert and delete) and contains queries. Updates syn-
chronize using fine-grained locks, while contains proceeds in
a wait-free manner, in parallel with updates, relying on RCU
to ensure correctness. The combination of RCU synchro-
nization with fine-grained locking of modified nodes yields a
simple design, greatly resembling the sequential algorithm,
and leading to a (relatively) simple proof of correctness, only
several pages long.

Citrus implements an internal search tree, with keys
stored in all nodes, and it is unbalanced. Searching for a
key, either in a contains operation or at the beginning of an
update, is done in a wait-free manner, as in the sequential
data structure, but inside an RCU read-side critical section.

Updates start by searching for their key, in a manner sim-
ilar to contains. An unsuccessful update (insert that finds
its key or delete that does not find its key), returns imme-
diately. Otherwise, the update is located where the change
should be done.

A new node is inserted as a leaf, requiring little synchro-
nization, but delete may need to remove an internal node.
When the node has two children, this is done by replac-
ing the node with its successor in the tree. This scenario
requires coordination with concurrent searches that could
miss the successor in both its previous location and in its
new location, necessitating delicate synchronization in some
concurrent search trees [5, 8, 10, 21]. Citrus easily cir-
cumvents this pitfall by copying the successor to the new
location, and using the RCU synchronization mechanism to
wait for on-going searches, before removing the successor
from its previous location.

Experimental evaluation of Citrus shows that its perfor-
mance beats previous RCU-based search trees [7, 20], even
under mild update contention. It also compares well with
the best-available concurrent dictionaries, e.g., [5, 17, 25].

The evaluation also reveals that the user-level RCU im-
plementation [9] is ill-suited for workloads in which many
updates concurrently synchronize through it. We sketch a
new implementation that avoids these pitfalls and scales bet-
ter with growing number of updates. In the new implemen-
tation, a thread indicates that it starts a read-side critical
section by incrementing a counter and setting a flag to true;
the flag is set to false at the end of the section. To syn-

rcu read lock

rcu read lock

rcu read unlock

synchronize rcu

Read-side critical section

Figure 2: The semantics of synchronize rcu

chronize, an update waits until every other thread either
increases its counter or sets its flag to false.

2. PRELIMINARIES
A concurrent system consists of a set of threads, communi-

cating by applying primitives to shared variables. A shared
data structure implementation provides a set of operations,
each invoked with possible parameters and returning with
a response. The invocation of an operation is a local step
of a thread, leading to the execution of an algorithm, di-
recting the thread to execute a sequence of atomic steps.
Each atomic step is either an instance of a shared memory
primitive or computation on variables that are local to the
thread. Returning from an operation is a local computation
step.

A configuration is an instantaneous snapshot of the system
describing the state of all local and shared variables. In the
initial configuration, all variables hold an initial value.

An execution π is an alternating sequence of configura-
tions and steps, C0, s1, ..., si, Ci, ..., where C0 is the initial
configuration, and each configuration Ci is the result of ex-
ecuting the step si in configuration Ci−1. A prefix σ of π is
a sub-sequence of π starting in C0 and ending with a con-
figuration. An interval of π is a sub-sequence that starts
with a step and ends with a configuration. The interval of
an operation op starts with the invocation step of op and
ends with the configuration following the response of op or
the end of π, if there is no such response.

The API for read copy update (RCU) provides several
functions, three of which are used in Citrus to synchronize
between readers and updates: rcu read lock, rcu read unlock
and synchronize rcu. A read-side critical section is the in-
terval starting with the step returning from rcu read lock
and ending with the configuration after the invocation of
rcu read unlock. The implementations of rcu read lock and
rcu read unlock must be wait-free. The RCU property (Fig-
ure 2) ensures that if a step of a read-side critical section pre-
cedes the invocation of synchronize rcu, then all steps of this
critical section precede the return from synchronize rcu [14,
15].

A dictionary is a set of key-value pairs, with totally or-
dered keys, with the following operations:

insert(k,val) adds (k, val) to the set; returns true if k is not
in the set and false otherwise.

delete(k) removes (k, val) from the set; returns true if k is
in the set and false otherwise.

contains(k) returns val if (k, val) is in the set; otherwise, it
returns false.

An update is either an insert or a delete.
A binary search tree (Figure 3) implements a dictionary; it

is internal if key-value pairs are stored in all nodes. A node v

of the tree stores a key, Key(v), which never changes. Two
dummy key values −1,∞ are used to avoid corner cases,
when the tree has fewer than two nodes; for every key k,
−1 < k < ∞. The root of the tree always points to a node
with key −1, this node has a right child with key ∞; all
other nodes are in the left sub-tree of ∞.

kv

Root −1

∞

> k< k
successor

Figure 3: Search tree with dummy nodes.

In a binary search tree (BST), all descendants in the left
sub-tree of v have keys smaller than the key of v, and all
descendants in the right sub-tree of v have keys larger than
the key of v.

The successor of node v is the node u with the smallest key
among the nodes with keys larger than or equal to Key(v).
In a BST, u is the leftmost node in the right sub-tree of v.

3. THE Citrus TREE ALGORITHM

Overview. A primary goal of Citrus is to avoid locking
when searching for a node, either in contains or at the be-
ginning of an update. This is implemented in an auxiliary
procedure get, which starts at the root and searches down
the tree in a manner similar to the sequential algorithm, ex-
cept that it is performed inside a read-side critical section,
wrapped with rcu read lock and rcu read unlock.

A contains simply invokes get to find the key; if the key
is found, it returns the value stored in the node returned by
get; otherwise, it returns false.

An insert invokes get, and returns false if get finds the
key. Otherwise, a new node with the key is inserted as a
leaf, added to the tree as the child of the last node in get’s
search.

A delete invokes get, and returns false if get does not find
the key. If the key is found in node v, then there are two
cases. If v has has at most one child, the node is removed by
redirecting the child field of v’s parent to point to v’s child
(see Figure 4(a) and (b)); later in the proof this is called
bypassing. Otherwise, v has two children and it is replaced
with its successor in the tree, which is stored in the leftmost
node in the right sub-tree of v.

Moving the successor, when v has two children, requires
coordination with a concurrent get searching for the succes-
sor, which may return a false negative response (Figure 5).
To overcome this problem, delete first inserts a copy of the
successor node in the deleted key’s location. Then the delete
waits for concurrent searches by executing synchronize rcu,
and only then, removes the old successor node. Searches
that start before synchronize rcu starts, find the successor in
its previous location, where it remains until they complete
(Figure 4(c)-(e)). Searches that start after synchronize rcu
starts, find the new copy of the successor.

k k′

k′T1 T1

T2 T2

Figure 5: Search for key k′ returns a false negative response
due to an overlapping delete.

Note that during a delete, there might be two copies of the
successor—in the original and in the new locations. This mo-
tivates the following weak BST (WBST) property (formally
defined in Definition 1): all descendants in the left sub-tree
of v have keys smaller than the key of v, and all descendants
in the right sub-tree of v have keys larger than or equal to
the key of v.

The WBST property allows multiple nodes with the same
key. If all nodes with the same key hold the same value,
preserving the WBST property ensures that contains is cor-
rect, as it may return the value of some duplicate node, and
ignore the others.

Updates synchronize among themselves by acquiring locks
on nodes returned by get. To avoid RCU deadlocks, locks
are acquired outside the read-side critical section. This cre-
ates a region of uncertainty, for example, if an insert reaches
the node with key k, but an overlapping delete operation
removes this node from the tree before insert locks it (see
Figure 6). If insert continues its operation, the new key will
not be part of the tree.

k kT1 T1

Figure 6: insert can add a node to an incorrect location due
to an overlapping delete.

We overcome this problem by validating the nodes after
locking them, and restarting the operation if validation fails.
An update restarts either because the locked nodes no longer
have a parent-child relation or because one (or both) of the
two nodes was deleted from the tree. Validating the parent-
child relation is done locally by checking the child pointer of
the parent node. When the operation validating is an insert,
the child pointer of the parent should be ⊥ (null pointer).
A tag is added to each child field, in order to avoid an ABA
problem (a child pointer changed to non-⊥ when a leaf is
inserted, then back to ⊥, when the leaf is moved by a delete).
(A total of two tag fields in each node, one for each child.) A
tag field is initialized to zero, and incremented every time the
corresponding child field is set to ⊥. Validating that a node
was not removed is also done locally, using a marked field
indicating that the node was deleted (in a manner similar to
[16]). If validation fails, the operation releases all locks and
restarts from the root.

T1

T2 T3

T1

T3

T2

T1

T3

T2

T1

T3

T2

(a) (b) (c) (d) (e)

k′

k′ k′

k′

kkk
k

T1

T2 T3

k

Figure 4: (a) and (b) show delete(k) when a node has one child. (c)-(e) show delete(k) that replaces a node with two children
with its successor; synchronize rcu is invoked between (d) and (e).

Detailed description. All operations use procedure get to
search for a key k, which starts from the root, and re-
turns two nodes, curr and prev, which is the parent of curr
(Line 15). The procedure also returns a direction, indicat-
ing whether curr is the left or right child of prev, and the
tag of prev that is associated with direction. If the key k
exists in the sub-tree rooted at start, then curr is the node
containing k. If the key does not exist, curr =⊥ and prev is
the last node found in the search. All operations executed
by get are wrapped with rcu read lock and rcu read unlock
creating a read-side critical section (Lines 2 and 14).

Citrus get function

1 function get(key)
2 rcu read lock
3 prev ← root
4 curr ← prev.child[right] . root is never ⊥
5 currentKey ← curr.key . root’s right child is never ⊥
6 direction ← right
7 while curr 6=⊥ and currentKey 6= key do
8 prev ← curr
9 direction ← (currentKey > key ? left : right)

10 curr ← prev.child[direction]
11 if curr 6=⊥ then
12 currentKey ← curr.key

13 tag = prev.tag[direction]
. Save tag inside read-side critical section

14 rcu read unlock
15 return (prev,tag,curr,direction)

The contains operation simply invokes get. If the key is
not in the tree, it returns false (Line 19). If the key is found,
it returns the value associated with it (Line 20).

Citrus contains function

16 function contains(key)
17 (-,-,curr,-) ← get(key)
18 if curr =⊥ then . The key was not found
19 return false
20 return curr.value

The insert operation invokes get, if the key is found, it re-
turns false (Line 25). If the key is not in the tree, insert locks
prev (Line 26) and then validates it (Line 27). If validation
fails, the operation starts over; otherwise, the new node is
created (Line 28) and added to the tree (Line 29).

Citrus insert function

21 function insert(key,value)
22 loop
23 (prev,tag,curr,direction) ← get(key)
24 if curr 6=⊥ then . The key was found
25 return false
26 lock(prev)
27 if validate(prev,tag,⊥,direction) then
28 node ← new(key,value,⊥,⊥)

. Create a new leaf node
29 prev.child[direction] ← node
30 unlock(prev)
31 return true
32 unlock(prev)

. Validation failed, release locks and retry

The validate procedure is a simple check of local properties
of the given nodes.

Citrus validate function

33 function validate(prev,tag,curr,direction)
34 if prev.marked or prev.child[direction]6=curr then
35 return false
36 if curr 6=⊥ then

. If curr 6=⊥, validate curr’s marked bit
37 return !curr.marked
38 return prev.tag[direction] = tag

. Otherwise validate tag

The incrementTag procedure receives a node and a direc-
tion, if the child of node in this direction is ⊥, it increments
the tag associated with this direction.

Citrus incrementTag function

39 function incrementTag(node,direction)
40 if node.child[direction] = ⊥ then
41 node.tag[direction] ← node.tag[direction]+1

The delete operation invokes get. If the key is not found, it
returns false (Line 46). If the key is found, prev and curr are
locked (Lines 47, 48) and validated (Line 49). If validation
fails, the operation unlocks prev and curr and starts over.
If curr has only one child, delete does not use the successor
(Line 50), curr is marked (Line 51) and deleted (Line 53).

If curr has two children (Line 57), the operation tries to
delete curr by using a successor. It finds the successor succ
and its parent prevSucc, by traversing the leftmost branch of
the sub-tree rooted at curr (Lines 58-64). This traversal does
not need a read-side critical section since the keys of nodes
traversed do not impact the direction. Once found, prevSucc
and succ are locked (Lines 67, 68) and validated (Line 69).
If validation fails, all nodes are unlocked and the operation
starts over; otherwise, a deletion using a successor is exe-
cuted (Lines 72 - 83). A new node with succ’s key and curr’s
children is created (Line 70) and locked (Line 71). Then, curr
is marked (Line 72) and replaced by node (Line 73). Next,
the operation waits for all pre-existing readers, by invoking
synchronize rcu (Line 74). When the operation returns, it
removes the old successor from the tree (Lines 75-80); note
that succ might be the right child of curr (Line 76). The
operation completes by unlocking all the nodes and return-
ing true (Line 83). After removing a node from the tree (in
one of Lines 53, 73, 77 or 80), incrementTag is called in case
the tag should be updated.

4. LINEARIZABILITY OF Citrus
Fix an execution π of the Citrus algorithm. Roughly

speaking, an implementation is linearizable [19] if it is pos-
sible to identify, for each operation, a linearization point, in-
side its interval, so that the responses of the operations are
consistent : that is, they are the same as if the operations
were performed sequentially in their linearization points.

The following notation is used in the proof. Let u, v be
two nodes in the tree, v → u indicates that u is a child of

v, v
left→ u when u is the left child of v and v

right→ u when u

is the right child of v; generally, v
d→ u, d = left means that

u is the left child of v, and analogously if d = right. There
is a path from node v to node u in configuration C, if there
is a sequence of nodes v = v0, v1, ..., vm = u, m > 0, such
that for every i, 0 ≤ i < m, vi → vi+1 in C. We denote
ρC(v, u)=v0, ..., vm. A node v is reachable in configuration
C if there is a path from the root to v in C. A key k is
reachable in configuration C if there is a reachable node v
such that k =Key(v); recall that Key(v) never changes. The
set of reachable keys stored in the sub-tree rooted at v, in
a configuration C, is denoted SetC(v); SetC(root) is the set
of reachable keys in the whole tree. We define the WBST
property:

Definition 1. The weak BST (WBST) property holds
in configuration C if for every internal node v, if u is a

node such that v
left→ u and k ∈SetC(u) then k <Key(v) and

if v
right→ u and k ∈SetC(u) then k ≥Key(v). The WBST

property holds in an execution prefix σ if it holds in every
configuration C in σ.

If the WBST property holds in an execution prefix σ that
ends in configuration C, then the range of keys in the sub-
tree of node v, denoted RangeC(v), can be defined by in-
duction on ρC(root, v): RangeC(root) = (−∞,∞); if the
parent of v is node u with k =Key(u) and RangeC(u)
= [minu,maxu) or RangeC(u) = (minu,maxu), then

RangeC(v) = [minu, k) or RangeC(v) = (minu, k) if u
left→ v,

and RangeC(v) = [k,maxu) if u
right→ v.

Let u, v, w be nodes such that u
d→ v → w, d ∈

{left,right}, and node v has only one child, in configura-

Citrus delete function

42 function delete(key)
43 loop
44 (prev,-,curr,direction) ← get(key)
45 if curr=⊥ then . The key was not found
46 return false
47 lock(prev)
48 lock(curr)
49 if validate(prev,-,curr,direction) then
50 if curr.child[left] =⊥ or curr.child[right] =⊥ then

. curr has a single child
51 curr.marked ← true
52 notNoneChild ←

(curr.child[left] 6=⊥ ? left : right)
53 prev.child[direction] ←

curr.child[notNoneChild]
54 incrementTag(prev,direction)
55 release all locks
56 return true
57 else . curr has two children
58 prevSucc ← curr . Searching for the successor
59 succ ← curr.child[right]
60 next ← succ.child[left] . succ 6=⊥
61 while next 6=⊥ do
62 prevSucc ← succ
63 succ ← next
64 next ← next.child[left]

65 succDirection← (curr = prevSucc ? right : left)
66 if curr 6= prevSucc then . Do not lock twice
67 lock(prevSucc)

68 lock(succ)
69 if validate(prevSucc,-,succ,succDirection) and

validate(succ,succ.tag[left],⊥,left) then
70 node← new(succ.key,succ.value,curr.child[left],

curr.child[right])
71 lock(node)
72 curr.marked ← true
73 prev.child[direction] ← node
74 synchronize rcu . Wait for readers
75 succ.marked ← true

. Remove the old successor
76 if prevSucc = curr then

. succ is the right child of curr
77 node.child[right] ← succ.child[right]
78 incrementTag(node,right)
79 else
80 prevSucc.child[left] ← succ.child[right]
81 incrementTag(prevSucc,left)

82 release all locks
83 return true
84 release all locks

. Validation failed, release locks and retry

tion C ∈ π. A primitive write operation s that immediately

follows C is a bypass of node v if u
d→ w in the configura-

tion that follows s in π (Figure 4(a) and (b)). The write
in Line 53 is a bypass of the node curr, and the writes in
Line 77 and Line 80 are a bypass of the node succ.

In order to distinguish between variables of different op-
erations, we denote by varop the variable var of operation op;
the operation is omitted when it is clear from the context.

An operation op accesses a node v when op reads one of
v’s fields. Only updates execute primitive writes, and when
an update op writes to a field of node v, v is locked by op.
Therefore, the fields of node v cannot be modified by another
operation until the lock on v is released.

Updates use validate to ensure that they operate on nodes
in the tree. The next lemma argues that if a node is not
reachable in a configuration, then its marked bit is true.
Note that a node is unmarked when it is added to the tree,
and marked before it is removed. Since updates operate on
locked nodes, this suffices to prove the lemma, even though
marking and removing a node are not performed atomically.

Lemma 1. If a node v is reachable in configuration C ∈ π
and v is unmarked in configuration C′ ∈ π that follows C,
then v is reachable in C′.

Proof. Assume, by way of contradiction, that the prop-
erty does not hold and let C be the last configuration in π
in which the property holds. Let s be the step by operation
op immediately following C; s must be a primitive write to
a child field of a locked node, in an update.

Case 1: insert. Line 29: By the validation in Line 27, prev
has no child in direction d (where d is the value of direc-
tion), hence, s does not make an unmarked node unreach-
able. Since node was created by op, it is unreachable in the
configuration immediately following the step in Line 28. If s
makes node reachable, then node is unmarked, as required.

Case 2: delete. By the validation in Line 49, prev
d→ curr

(where d is the value of direction).
Bypassing (Lines 53, 77, 80) makes only curr or succ un-

reachable. The lemma holds since curr is marked before
Line 53 and succ is marked before Lines 77 and 80.

Line 73: By Line 72, curr is marked and can become un-
reachable. Both children of curr become the children of node
in Line 70. Since s adds node to the tree as a left or right
child of prev (depending on d), curr is the only node that
becomes unreachable. Since node is created by op, it is
unreachable in the configuration immediately following the
step in Line 70. If node becomes reachable by s, then it is
unmarked, as required.

To ensure that get with key k is correct, we prove that all
nodes accessed by get are in the tree at some point during
its interval (Lemma 2) and that if k is in the tree throughout
a search from the root, then it is found (Lemma 8). Recall
that an operation op accesses a node v when op reads one
of v’s fields.

Lemma 2. Let π′ be the interval of operation op. If op
accesses a node v in step s, then v is reachable in some
configuration C ∈ π′ that precedes s.

Proof. By induction on the length of the path taken by
op from the root to node v. In the base case, the root is
always reachable.

For the induction step, assume that the lemma holds for
paths of length < `. Let v be the `’th node in the path taken
by op and let u be the (`−1)’th node in this path. Suppose,

without loss of generality, that op read u
right→ v in step s′.

By the induction hypothesis, u is reachable in some con-
figuration during π′; let C be the last such configuration. If
s′ precedes C, then v is reachable in the configuration C′

that immediately follow s′. Since the pointer read in step s′

precedes any access to v, C′ precedes s (Figure 7(a)).

(a)
s′ C′ C

(b)
u is marked s′s′′C

Figure 7: The proof of Lemma 2. Case (a) u is reachable
when u→ v is read. Case (b) u is unreachable when u→ v
is read

If s′ does not precede C, we argue that v is the right child
of u when u is removed from the tree. Suppose, by way of
contradiction, that u has some other right child w 6= v in C
and s′′ is the step removing u from the tree, i.e., the step

that immediately follows C. Since op read u
right→ v, there is

an update that sets the right child of u to v before s′. Since
u is reachable in C and unreachable in the configuration
following s′′, Lemma 1 implies that u is marked before s′′.
The update removing u does not change u’s children fields
(by the code, no operation writes to child fields of curr or
succ). Any other update validates all locked nodes to check
that they are not marked. Since u is marked, any update
that tries to write to u restarts without changing u, which
is a contradiction.

When u is removed from the tree, v is the right child of u.
Since C is the last configuration in π′ in which u is reachable,
both v and u are reachable in C ∈ π′, C precedes s′ that
precedes s, as required.

The next lemma shows the correctness of tag validation.
It shows that if a child pointer is set to ⊥, by another op-
eration, after the tag is read and before the node is locked,
then the tag is incremented during this interval.

Lemma 3. Let π′ be the interval starting with the step
of Line 13 by op and ending with the configuration
that immediately follows the lock acquisition by op. If
prevop.child[directionop] was set to ⊥ during the interval π′

then prevop.tag[directionop] 6= tagop in every configuration in
the interval of op that follows π′.

Proof. During π′, op does not hold a lock on prevop,
thus prevop.child[directionop] is set to ⊥ by some other op-
eration op’. An insert sets a child field to non ⊥ val-
ues since new is never ⊥, hence, op’ is a delete. A
delete calls incrementTag after every write to a child field,
thus, if prevop.child[directionop] is set to ⊥ by op’ then
prevop.tag[directionop] is incremented before op’ unlocks
prevop, meaning that prevop.tag[directionop] is incremented
during π′. This concludes the proof since op reads the value
of tagop in line 13 that is the first step of π.

Searches, implemented in get, follow the sequential algo-
rithm, so it is critical to show that the tree maintains the
WBST property. This is proved by induction on the prefixes
of the execution π. A critical step in the proof is to show
that an insert adds a node in the right location. This relies
on the following lemma (Lemma 4), showing that the RCU
mechanism of waiting for all pre-existing readers guarantees
that if the search of an insert ends up in the wrong location,
due to overlapping delete, then its validation fails.

Lemma 4. Let op be an insert operation with key k that
successfully validates prev and curr, and let σ be the execution
prefix that ends in configuration C that immediately follows
the return from validate. If the WBST property holds in σ,
then k ∈RangeC(prev).

Proof. If the path traversed by op is the same
as ρC(root, prev), then, by the WBST property,
k ∈RangeC(prev). The path traversed by op is differ-
ent from ρC(root, prev), if it was changed by an overlapping
update op’. Consider every possible write to a child field,
during π′, the interval of op.

Case 1: insert. Line 29: By the validation in Line 27,
prevop′ has no child in direction d (where d is the value of
direction), Thus, op’ adds a leaf to the tree, without changing
the range of prevop.

Case 2: delete. By the validation in Line 49, prev
d→ curr

(where d is the value of direction).
Bypassing (Lines 53, 77, 80) only increases the ranges of

other nodes and k ∈RangeC(prevop) is maintained.
Line 73: Both children of currop′ become the children of

nodeop′ in Line 70. Hence, currop′ is replaced with nodeop′
that has the key of succop′ . The node succop′ is found by
traversing the leftmost branch of the sub-tree rooted at
currop′ . Since the WBST property holds in σ, this traver-
sal starting at currop′ finishes at the location of the succes-
sor of currop′ . Since op’ accesses succop′ , Lemma 2 implies
that succop′ is reachable after some prefix of π ending before
Line 69. By the validation in Line 69 and Lemma 1, succop′
is reachable and it has no left child, implying that succop′ is
the successor of currop′ . Therefore, Key(succop)= k′′ ≥ k′.

If k < k′ or k ≥ k′′, then k ∈RangeC(prevop) still holds.

Suppose otherwise that k′ ≤ k < k′′ and
k /∈RangeC(prevop). If the step of line 73 by op’ precedes
or is in the read-side critical section of op then before re-
moving the successor succop′ from the tree, op’ invokes syn-
chronize rcu and waits until the end of op’s read side critical
section, by the RCU property. Since the WBST property
holds during the get of op, its search ends in succop′ (succop′
equals prevop and currop equals ⊥). Since op is an insert, it
invokes rcu read unlock and locks prevop prior to validation.
On the other hand, op’ unlocks succop′ only after marking
it in Line 75. Therefore, the validation of prevop by op finds
that it is marked, and fails (Figure 8).

Otherwise, the step of Line 73 by op’ is executed after the
read side critical section of op and before op locks prevop. If
prevop equals succop′ then op’ marks prevop before releasing
its lock, and the validation of op fails. If not then by the
WBST property the change was in the left sub-tree of prevop.
In this case, validation fails, because either prevop.child[left]
6=⊥ or prevop.tag[left] 6= tagop (Lemma 3).

The WBST property now follows by a simple induction.
Lemmas 1 and 2 show that the correct successor replaces a
deleted node with two children (bypassing a node with one
child clearly preserves the WBST property), while Lemma 4
shows that new nodes are correctly inserted.

Lemma 5. The WBST property holds after every prefix σ
of π.

Proof. Assume, by way of contradiction, that the
WBST property does not hold after some prefix of π. Let
σ be the longest prefix of π in which the WBST property

holds, ending in configuration C, and let s be the first step
by operation op, that invalidates the property; op must be
an update and s must be a write to a child field of a locked
node. We consider all possible cases.

Case 1: insert. Line 29: The WBST property holds for
σ, and by Lemma 4, k ∈RangeC(prev). Since node has the
key k and is added as a child of prev, the WBST property
is maintained. (The direction is correct as in the sequential
algorithm.)

Case 2: delete. By the validation in Line 49, prev
d→ curr

(where d is the value of direction).
Bypassing (Lines 53, 77, 80) a node maintains the WBST

property.
Line 73: Both children of currop′ become the children of

nodeop′ , in Line 70, and currop′ is replaced with nodeop′ that
has the key of succop′ . Since the WBST property holds in
σ, and succop′ is found by by traversing the leftmost branch
of the sub-tree rooted at currop′ , the traversal ends at the
location of the successor of currop′ . Since op’ accesses succop′ ,
Lemma 2 implies that succop′ is reachable after some prefix
of π ending before Line 69. By the validation in Line 69 and
Lemma 1, succop′ is reachable and succop′ has no left child,
implying that succop′ is the successor of currop′ . Therefore,
s replaces curr with a node that have the same key as the
successor of curr, and the WBST property is maintained.

The next lemma shows that each node has a single par-
ent, and thus, delete makes a node unreachable in a single
write to a child field. It is proved by way of contradiction,
considering the first time when the property is violated.

Lemma 6. A node that is reachable in a configuration
C ∈ π has one reachable parent in C.

Proof. Assume, by way of contradiction, that the prop-
erty does not hold and let C be the last configuration in π
in which the property holds. Let s be the step by operation
op immediately following C; s must be a primitive write to
a child field of a locked node, in an update.

Case 1: insert. Line 29 adds a parent to node, which
previously had no parent in the tree.

Case 2: delete. By the validation in Line 49, prev
d→ curr

(where d is the value of direction).
Bypassing (Lines 53, 77, 80): Since C is the last configura-

tion where the property holds, the node being bypassed has
at most one reachable parent in C. The bypassing operation
makes the node being bypassed unreachable, and maintains
the number of reachable parents for other nodes.

Line 73: Both children of curr become the children of
node, which is unreachable in every configuration that pre-
cedes s, in Line 70, and curr is replaced with node (making
curr unreachable), in Line 73. This does not increase the
number of parents per node.

The following lemma is used to prove that if a node v with
key k remains in the tree during a get, then v can be found.
The reason is that the path to v never gets longer, and that
even if a node u, that used to be on the path from the root
to v, is read, there is still a path from u to v.

Lemma 7. If there is a path from u to v in configura-
tion C ∈ π and v is reachable in a configuration C′ ∈ π
that follows C, then there is a path from u to v in C′ and
|ρC′(u, v)| ≤ |ρC(u, v)|.

C

op

op’

read prevop validation

prevop′
d→ nodeop′ synchronize rcu

mark succop′ unlock succop′

Read-side critical section

Figure 8: The execution considered in the proof of Lemma 4

Proof. Assume, by way of contradiction, that v is reach-
able in some configuration that follows C, but the properties
are not maintained. Let C′ be the last configuration in which
both propertied hold. Let s be the step immediately follow-
ing C′; s must be a write to a child field of a locked node,
by an update op. We consider all possible cases:

Case 1: insert. Line 29: By the validation in Line 27, prev
has no child in direction d (where d is the value of direction),
thus, op adds a leaf to the tree, which does not change the
reachability of v from u nor the length of existing paths in
the tree.

Case 2: delete. By the validation in Line 49, prev
d→ curr

(where d is the value of direction).
Bypassing (Lines 53, 77, 80): By the conditions of the

lemma and Lemma 6, the node being bypassed is not v (by-
passing a node with a single reachable parent makes it un-
reachable). If the node being bypassed is u, then s does not
change any child field on the path from u to v, and the path
and its length are maintained. If the node being bypassed is
any other node in ρC′(u, v), then s only shortens the path
and the lemma holds.

Line 73: Both children of curr become the children of
node, in Line 70, and curr is replaced with node. There-
fore, only curr may become unreachable. By Lemma 6 curr
becomes unreachable, and by the conditions of the lemma
v 6=curr. If curr = u, then s does not change any child
field on the path from u to v, and the path and its length
are maintained. If curr is any other node in ρC′(u, v),
and C′′ is the configuration immediately following s, then
node ∈ρC′′(u, v), the path exists and its length remains the
same.

We linearize the successful updates, as follows:

- A successful insert is linearized with its primitive write
in Line 29.

- A successful delete is linearized with its primitive write
in Line 53 or 73. (At most one of these lines is exe-
cuted.)

Let s1, s2, ... be the primitive writes in π, in which suc-
cessful updates are linearized, in their order in π. For
every i ≥ 1, let Ci be the configuration immediately pre-
ceding si and let C′i be the configuration immediately fol-
lowing si. A successful insert linearized at si is consis-
tent if k /∈SetCi(root) and k ∈SetC′

i
(root), and a successful

delete linearized at si is consistent if k ∈SetCi(root) and
k /∈SetC′

i
(root).

The next lemma is important for proving the consistency
of successful inserts. It shows that if the key was inserted,
by another operation, during the get of an insert then either
(i) get finds the key or (ii) the key is inserted as a child of the
last node in the search. Later, the first case of this lemma
is used to linearize unsuccessful contains and delete.

Lemma 8. Let π′ be read-side critical section of get (k),
and suppose that every successful update linearized before
the last configuration of π′ is consistent. Let C be the first
configuration in π′ such that k ∈SetC(root) and assume that
k ∈SetC′(root), for every configuration C′ ∈ π′ that follows
C. If C precedes the last access to a child field by get then,
(i) get returns curr such that k =Key(curr). Otherwise, (ii)

get returns prev such that prev
d→ v and k =Key(v) where d

is the value of direction.

Proof. Let v be the closest reachable node to the root in
C such that k =Key(v), and let v′ be the value of prevop in
C or the root if C precedes Line 3 of get. since the WBST
property holds in π and insert adds leaves, v′ ∈ρC(root, v).

If C does not precedes the last access to a child field by

get, then prev = v′
d→ v as required.

If C precedes the last access to a child field by get, then
get must reach a node with key k. Suppose otherwise that
get does not reach a node with key k. If v is reachable in
the last configuration of π′, then the path from v′ to v does
not get longer (Lemma 7). Since the WBST property holds
in π, get traverses this path, and hence, if a node with key k
is not found, then v is unreachable in the last configuration
of π′.

Let s ∈ π′ be the primitive write by operation op’ that
makes v unreachable. Let Cs be the configuration imme-
diately preceding s in π′ and let C′s be the configuration
immediately following s in π′; v is reachable in Cs and un-
reachable in C′s. By the validation in Line 27, insert does not
make a node unreachable, and hence, only delete can make v
unreachable. Since k ∈SetC′

s
(root), op’ has key k′ 6= k. The

only other way a delete makes a node unreachable is when
v =succop′ and s is the primitive write of either Line 77 or
Line 80.

Let s′ ∈ π′ be the primitive write by operation op’ that
adds nodeop′ to the tree. Let Cs′ be the configuration im-
mediately preceding s′ in π′ and let C′s′ be the configura-
tion immediately following s′ in π′; Since succop′ is found
by traversing the leftmost branch of the sub-tree rooted at
currop′ , there is a path from currop′ to v in a configuration
that precedes Cs′ , there is a path from currop′ to v in Cs′

(Lemma 7). By Line 70, nodeop′ has the same children as
currop′ , and therefore, there is a path from nodeop′ to v in
C′s′ . This means that nodeop′ ∈ρC′

s′
(root, v), and by the

choice of v, nodeop′ is not in the tree in C. Therefore, syn-
chronize rcu is invoked by op’ after get is invoked by op, and
by the RCU property, op’ executes Line 77 or Line 80 after
the last configuration of π′, contradicting the assumption
that v is unreachable in the last configuration of π′.

The next lemma proves that there is only one node with
key k, and thus, only one node should be made unreachable
in order for delete to be consistent.

Lemma 9. Let v be a node that is successfully validated
by an operation op. Let σ be the prefix ending with the
configuration C that immediately follows the return from
validate. If all successful updates linearized in σ are con-
sistent, then there is no other reachable node v′ such that
Key(v)=Key(v′).

Proof. Since v is accessed by op during validate,
Lemma 2 implies that v is reachable in some configura-
tion that precedes C. By the validation, v is unmarked
and Lemma 1 implies that v is reachable in C. Since the
linearization point of insert is its first primitive write and
every insert that is linearized in σ is consistent, insert does
not create multiple keys.

The only other operation that can create multiple keys is a
delete copying a successor. We argue that multiple keys exist
only while delete holds locks on both duplicates, implying
that if op locked a node v with key k, then this is the only
node with key k in the tree in the configuration following
the return from lock(v). Note that op invokes validate while
holding the lock on v.

Let op’ be delete(k′) that has a successor succop′ with key
k. succop′ is locked in Line 68 and nodeop′ is locked in Line 71,
before nodeop′ is inserted into the tree (Line 73). Either
Line 77 or Line 80 is executed before the locks on nodeop′
and succop′ are released. We argue that, in both cases, op’
removes succop′ from the tree. Both Line 77 and Line 80
are a bypass of succop′ , which has a single parent by Lemma
6; therefore, we need to prove that nodeop′ is reachable in
the configuration immediately preceding Line 77 and pre-
vSuccop′ is reachable in the configuration immediately pre-
ceding Line 80.

Line 77: Since op’ accesses prevop′ , Lemma 2 implies that
it is reachable in some configuration preceding the step of
Line 49. Furthermore, Lemma 1 implies that prev is reach-
able in the configuration immediately preceding Line 73,
making nodeop′ reachable in the configuration immediately
preceding Line 77.

Line 80: Since op’ accesses prevSuccop′ , Lemma 2 im-
plies that it is reachable in some configuration preceding
the step of Line 69. Furthermore, Lemma 1 implies that pre-
vSuccop′ is reachable in the configuration immediately pre-
ceding Line 80.

Lemma 10. All successful updates are consistent.

Proof. By induction on the linearization points,
s1, s2, For every j ≥ 1, let Cj be the configuration im-
mediately preceding sj and C′j be the configuration imme-
diately following sj .

Base: A successful update op is linearized at its first prim-
itive write, hence, there is no write before s1. Let k be the
key of op, and note that k /∈SetC(root) for every configura-
tion C preceding s1, and by Lemma 2, op cannot access a
node with key k, hence, op is a successful insert. Since op
accesses prev, by Lemma 2, prev is reachable in some config-
uration preceding the step of Line 27. Since prev is validated
in Line 27 and is unmarked, Lemma 1 implies that prev is
reachable in C1 and k ∈SetC′

1
(root).

For the induction step, assume that the successful updates
linearized at s1, s2, ..., si−1 are consistent, and consider the
successful update op linearized at si.

Case 1: op is delete(k). The if statement in Line 45 im-
plies that k =Key(curr). By the validation in Line 49, curr

and prev are both unmarked and prev
d→curr (where d is the

value of direction). Since op accesses prev and curr, Lemma 2
implies that they are reachable in some configuration pre-
ceding the step of Line 49. Furthermore, Lemma 1 implies
that prev and curr are reachable in Ci. Since prev is the
only reachable parent of curr (Lemma 6) curr is unreachable
in C′i. By the induction hypothesis, all successful updates
linearized at s1, s2, ..., si−1 are consistent. Together with
the fact that op validates curr, this implies that curr is the
only reachable node with key k in Ci (Lemma 9) Therefore,
k /∈SetC′

i
(root).

Case 2: op is insert(k): Since op accesses prevop, Lemma 2
implies that prevop is reachable in some configuration preced-
ing the step of Line 27. Since prevop is validated in Line 27,
it is unmarked, and Lemma 1 implies that it is reachable in
Ci. Since k =Key(nodeop), k ∈SetC′

i
(root).

Assume, by way of contradiction, that k ∈SetCi(root).
Let sj , j < i be the last linearization point of a successful
insert with key k. By the induction hypothesis, and since
k ∈SetCi(root), no delete(k) is linearized between sj and si,
and for every configuration C that follows Cj and precedes
Ci, k ∈SetC(root).

If C′j precedes or is in the read-side critical section of
op then Lemma 8 implies that either k =Key(currop) or

prevop
d→ v and k =Key(v) (where d is the value of di-

rection). If k =Key(currop) then currop 6=⊥ and op returns
false in contradiction to op being a successful update. If

prevop
d→ v then the validation in Line 27 fails, in contradic-

tion to the linearization of op.
Otherwise, since the WBST property holds in π, sj inserts

the new node as the child of prevop in direction d, and the
validation of op fails, because either prevop.child[d] 6=⊥ or
prevop.tag[d] 6= tagop (Lemma 3).

An operation op with interval π′, of the remaining types
(contains and failed updates), is linearized as follows:

- If op is a failed contains or a failed delete, then curr
=⊥.

If k ∈SetC(root) for every configuration C ∈ π′,
then k ∈SetC(root) for every configuration C ∈ π′′,
where π′′ is the read-side critical section of op. By
Lemma 8(i), op reaches a node with key k, which is
a contradiction. Therefore, k /∈SetC(root), for some
configuration C ∈ π′. The linearization point of op is
after last C′ ∈ π′ such that k /∈SetC′(root), and before
the successful insert with the same linearization point,
if such insert exists. This linearization point is clearly
consistent.

- If op is a successful contains that returns a node v’s
value or a failed insert that reached node v with key k,
then it is linearized after the last configuration C ∈ π′
such that v is reachable in C, and before the successful
delete with the same linearization point, if such delete
exists.

In op, curr = v, and by condition of the while loop in
get (Line 7), k =Key(v). By Lemma 2, curr is reach-
able in some configuration C′ ∈ π′, and the lineariza-
tion point exists. This linearization point is consistent
since k ∈SetC(root) and if op is a successful contains,
it returns v.value.

Together with Lemma 10, this proves the linearizability
of Citrus. Furthermore, if there is only a finite number of

keys, then every path from the root is finite, and contains is
wait-free.

Theorem 11. The Citrus algorithm is a linearizable im-
plementation of a binary search tree, supporting wait-free
contains.

5. EVALUATION

Setup. We implemented Citrus in C since both the RCU
implementation and the RCU-based trees are implemented
in C. We considered two RCU-based trees, the red-black
tree [20] and Bonsai, a balanced search tree [7], both us-
ing a global lock to synchronize among updates.1 We also
compared Citrus to three concurrent dictionary data struc-
tures that have C implementations: The optimistic AVL
tree2 [5], the lock-free search tree [25] and the lock-based
lazy skiplist3 [17].

The experiments were run on a machine with four AMD
Opteron 6376 Processors, each with 16 cores, for a total of
64 cores. All memory allocation used the jemalloc library,
to avoid synchronization bottlenecks during memory alloca-
tion.

Experiment sets were run with two key ranges, [0, 2 · 105]
and [0, 2 · 106]; in both sets, the tree was pre-filled to the
size of half the key range. During pre-filling memory was
reclaimed. For every test, each thread ran for five seconds,
continuously executing randomly chosen operations with a
randomly chosen key, without performing any memory recla-
mation. We report the overall throughput (total number of
executed operations divided by the running time). Each ex-
periment was run five times for each configuration of opera-
tion distribution, key range and thread count, we report the
arithmetic average as the final result. (The error margins,
omitted for readability, are small.)

Running experiments in the unmanaged C environment
revealed that memory management, and in particular cache
usage, has a significant impact on performance. The size
of nodes, order of fields, and their alignment inside cache
lines, often influences the results more than the algorithmic
aspects of the implementation.

New RCU. During our initial evaluation of Citrus, we
identified that the user-space RCU implementation [9] does
not scale for workloads with many concurrent updates, due
to expensive synchronization among them, which include ac-
quiring a global lock. The left side of Figure 9 shows rep-
resentative results; similar behaviour was observed under
different update contention and key ranges. To show that
the drop in throughput was an implementation issue, we
re-implemented the subset of the RCU API used in Cit-
rus, in a manner similar to epoch-based reclamation [13].
In our implementation, each thread has a counter and flag,
the counter counts the number of critical sections executed
by the thread and a flag indicates if the thread is currently

1We were unable to run the red-black tree variant [20] us-
ing transactional memory to optimistically handle conflict-
ing updates.
2Implemented in C by Philip W. Howard,
https://github.com/philip-w-howard/
RP-Red-Black-Tree.
3Implemented in C by Vincent Gramoli, https://
github.com/gramoli/synchrobench.

1 4 16 64

1

2

3

·106

threads

o
p

er
a
ti

o
n
s/

se
co

n
d
s

1 4 16 64
0

0.5

1

1.5

·107

threads

Citrus (standard RCU) Citrus

Figure 9: Impact of concurrent updates on the standard
RCU implementation compared to our scalable implemen-
tation: example with operation distribution of 50% contains
and key range [0, 2 · 105]. Left side is a detailed view of the
behaviour of the original implementation.

1 4 16 64

0

2

4

6

8

·107

threads

o
p

er
a
ti

o
n
s/

se
co

n
d
s

key range [0, 2 · 105]

1 4 16 64

0

1

2

3
·107

threads

key range [0, 2 · 106]

Citrus AVL Skiplist

Bonsai Red-Black Lock-Free

Figure 10: Throughput of the different algorithms with a
single writer.

inside its read-side critical section. The rcu read lock oper-
ation increments the counter and sets the flag to true, while
the rcu read unlock operation sets the flag to false. When a
thread executes a synchronize rcu operation, it waits for ev-
ery other thread, until one of two things occurs: either the
thread has increased its counter or the thread’s flag is set
to false. The main advantage of this implementation is that
multiple threads executing synchronize rcu need not coordi-
nate among themselves, and they do not acquire any locks.
The right side of Figure 9 shows the throughput of Citrus
with the new RCU implementation. All other experiments
were run with the new RCU implementation.

Single writer. The throughput results of the single-writer
workload appear in Figure 10. This set of experiments was
designed to favor the RCU-based trees, red-black tree and
Bonsai: they all include a single thread executing updates
(50% insert and 50% delete). Though this set favors the
RCU-based trees, Bonsai does not perform well, possibly
due to its functional programming style, which reconstruct
parts of the tree after every update.

Other results. Figure 11 shows the results for key ranges
[0, 2 · 105] and [0, 2 · 106]. Experiments with 100% contains
distribution (on the left) are supposed to favor the RCU-

based trees. As expected, the RCU-based trees show good
performance, which is more visible in large key ranges.

The shortcomings of RCU-based trees with coarse-grained
locks are seen already with 98% contains distribution. Both
red-black and Bonsai do not scale even with a low update
contention, while Citrus has similar performance to other
trees. In heavy update workload of 50% contains distribu-
tion, Citrus continues to scale, though the cost of synchro-
nize rcu is evident. Note that unlike the AVL tree, Citrus
and the lock-free tree do not pay a cost for tree balancing,
which is not cost-effective when considering a uniform dis-
tribution of keys.

6. RELATED WORK
Read copy update (RCU) was introduced [24] as a solution

to lock contention and synchronization overhead in read-
intensive workloads. RCU can be used for explicit mem-
ory reclamation [23]. A formal semantics for RCU appears
in [14, 15].

Relativistic programing is a methodology for concurrent
programming using RCU, which does not assume sequen-
tially consistent memory. It instructs readers to access items
in the data structure in an order that is reverse to the order
that updates modify them, but it does not deal with concur-
rent updates. Relativistic programming was employed in a
concurrent hash table [28, 29] in which a lock protects each
bucket. Relativistic programming was also used in a red-
black tree [20], which allows only one concurrent writer to the
tree, optimistically enforced by transactional memory [18].
RCU was used in a different way in Bonsai, a balanced tree
algorithm [7]. Inspired by functional programming, Bon-
sai never modifies the tree in place, creating instead a new
instance for the changed data structure.

Many concurrent search trees were presented in recent
years, several of them using fine-grained locks, e.g., [1, 5,
8, 10]. The AVL tree of Bronson et al. [5] uses fine-grained
locks, and it is partially external and relaxed balanced.
Other trees are nonblocking, e.g., [4, 6, 11, 13, 21, 25]. These
algorithms typically use compare&swap primitives, and in
some cases, even stronger primitives on several shared vari-
ables, like multi-word compare&swap [13] or the customized
LLX, SCX and VLX primitives [6]. Both [11, 21] use a
similar technique, creating record objects for coordination
between updates and inserting them into the updated node
using a compare&swap operation. A different approach was
used in [25], it marks edges instead of nodes, enabling in-
sertion without helping and helping deletions without addi-
tional record object.

Several of these implementations [6, 4, 8, 10, 11, 25] also
provides wait-free contains.

7. DISCUSSION
We have shown that it is possible, and even relatively

simple, to design RCU-based concurrent search trees with
concurrent updates. This opens up many interesting direc-
tions for future research. The obvious question is to ex-
tend Citrus to a balanced search tree. It is also important
to integrate into Citrus two primary aspects of RCU us-
age, namely, efficient memory reclamation and out-of-order
execution of memory instructions. A broader topic is to
employ RCU in lock-free algorithms, using primitives such
as compare-and-swap instead of locks. This will necessitate

more refined mechanisms for synchronization among readers
and updates, since synchronize rcu is inherently blocking.

Acknowledgements. We would like to thank Hongseok
Yang for suggesting that we look at concurrent algorithms
using RCU, Noam Rinetzky for discussions of the correct-
ness proof, Adam Morrison for his help with understanding
the performance of the implementation and many insightful
discussions, and finally, Yehonatan Rubin, Dana Drachsler,
Alexander Libov and Eran Yahav for their help with the
evaluation.

Code. Citrus source code is available at https://
bitbucket.org/mayaarl/citrus

8. REFERENCES
[1] Yehuda Afek, Haim Kaplan, Boris Korenfeld, Adam

Morrison, and Robert E. Tarjan. CBTree: A practical
concurrent self-adjusting search tree. In 26th
International Conference on Distributed Computing
(DISC), pages 1–15, 2012.

[2] Hagit Attiya, Rachid Guerraoui, and Eric Ruppert.
Partial snapshot objects. In 20th ACM Symposium on
Parallelism in Algorithms and Architectures, pages
336–343, 2008.

[3] Rudolf Bayer and Mario Schkolnick. Concurrency of
operations on b-trees. In Michael Stonebraker, editor,
Readings in database systems, pages 129–139. Morgan
Kaufmann Publishers Inc., 1988.

[4] Anastasia Braginsky and Erez Petrank. A lock-free
B+tree. In 24th ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA), pages 58–67,
2012.

[5] Nathan G. Bronson, Jared Casper, Hassan Chafi, and
Kunle Olukotun. A practical concurrent binary search
tree. In 15th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming
(PPoPP), pages 257–268, 2010.

[6] Trevor Brown, Faith Ellen, and Eric Ruppert. A
general technique for non-blocking trees. In 19th ACM
Symposium on Principles and Practice of Parallel
Programming (PPoPP), pages 329–342, 2014.

[7] Austin T. Clements, M. Frans Kaashoek, and Nickolai
Zeldovich. Scalable address spaces using RCU
balanced trees. In 7th international conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS), pages 199–210, 2012.

[8] Tyler Crain, Vincent Gramoli, and Michel Raynal. A
contention-friendly binary search tree. In 19th
International Conference on Parallel Processing
(Euro-Par), pages 229–240, 2013.

[9] Mathieu Desnoyers, Paul E. McKenney, Alan S. Stern,
Michel R. Dagenais, and Jonathan Walpole. User-level
implementations of Read-Copy Update. IEEE
Transactions on Parallel and Distributed Systems,
23(2):375–382, 2012.

[10] Dana Drachsler, Martin Vechev, and Eran Yahav.
Practical concurrent binary search trees via logical
ordering. In 19th ACM Symposium on Principles and
Practice of Parallel Programming (PPoPP), pages
343–356, 2014.

1 4 16 64

0

0.5

1

·108

[0
,2
·1

0
5
]

100% contains

1 4 16 64

0

2

4

6

8

·107 98% contains

1 4 16 64

0

2

4

6
·107 50% contains

1 4 16 64

0

1

2

·107

[0
,2
·1

0
6
]

1 4 16 64

0

1

2

3
·107

1 4 16 64

0

1

2

3

·107

Citrus AVL Skiplist Bonsai Red-Black Lock-Free

Figure 11: Throughput of the different algorithms with key range [0, 2·105] and [0, 2·106] under different operation distribution;
y-axis show the throughput (operations/sec), and x-axis show the number of threads.

[11] Faith Ellen, Panagiota Fatourou, Eric Ruppert, and
Franck van Breugel. Non-blocking binary search trees.
In 29th ACM Symposium on Principles of Distributed
Computing (PODC), pages 131–140, 2010.

[12] Kapali P. Eswaran, Jim N. Gray, Raymond A. Lorie,
and Irving L. Traiger. The notions of consistency and
predicate locks in a database system. Commun. ACM,
19(11):624–633, November 1976.

[13] Keir Fraser. Practical lock-freedom. PhD thesis,
University of Cambridge, 2003.

[14] Alexey Gotsman, Noam Rinetzky, and Hongseok
Yang. Verifying concurrent memory reclamation
algorithms with grace. In 22nd European Symposium
on Programming (ESOP), pages 249–269, 2013.

[15] Dinakar Guniguntala, Paul E. McKenney, Josh
Triplett, and Jonathan Walpole. The read-copy-update
mechanism for supporting real-time applications on
shared-memory multiprocessor systems with Linux.
IBM Systems Journal, 47(2):221–236, May 2008.

[16] Steve Heller, Maurice Herlihy, Victor Luchangco,
Mark Moir, William N. Scherer III, and Nir Shavit. A
lazy concurrent list-based set algorithm. In 9th
International Conference on Principles of Distributed
Systems (OPODIS), pages 3–16, 2006.

[17] Maurice Herlihy, Yossi Lev, Victor Luchangco, and
Nir Shavit. A simple optimistic skiplist algorithm. In
14th International Conference on Structural
Information and Communication Complexity
(SIROCCO), pages 124–138, 2007.

[18] Maurice Herlihy and J. Eliot B. Moss. Transactional
memory: architectural support for lock-free data
structures. SIGARCH Comput. Archit. News,
21(2):289–300, May 1993.

[19] Maurice P. Herlihy and Jeannette M. Wing.
Linearizability: a correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst.,
12(3):463–492, July 1990.

[20] Philip W. Howard and Jonathan Walpole. Relativistic
red-black trees. Concurrency and Computation:
Practice and Experience, 2013.

[21] Shane V. Howley and Jeremy Jones. A non-blocking
internal binary search tree. In Proceedinbgs of the 24th
ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA), pages 161–171, 2012.

[22] Paul E. McKenney. RCU Linux usage.
http://www.rdrop.com/users/paulmck/RCU/
linuxusage.html.

[23] Paul E. McKenney. Exploiting Deferred Destruction:
An Analysis of Read-Copy-Update Techniques in
Operating System kernels. PhD thesis, Oregon State
University, 2004.

[24] Paul E. McKenney and John D Slingwine. Read-copy
update: Using execution history to solve concurrency
problems. In Parallel and Distributed Computing and
Systems, pages 509–518, 1998.

[25] Aravind Natarajan and Neeraj Mittal. Fast concurrent
lock-free binary search trees. In 19th ACM Symposium
on Principles and Practice of Parallel Programming
(PPoPP), pages 317–328, 2014.

[26] Erez Petrank and Shahar Timnat. Lock-free
data-structure iterators. In 27th International
Conference on Distributed Computing (DISC), pages
224–238, 2013.

[27] Abraham Silberschatz and Zvi Kedem. Consistency in
hierarchical database systems. J. ACM, 27(1):72–80,
1980.

[28] Josh Triplett, Paul E. McKenney, and Jonathan
Walpole. Scalable concurrent hash tables via
relativistic programming. SIGOPS Oper. Syst. Rev.,
44(3):102–109, August 2010.

[29] Josh Triplett, Paul E. McKenney, and Jonathan
Walpole. Resizable, scalable, concurrent hash tables.
In 2011 USENIX conference on USENIX annual
technical conference, 2011.

